Name:		
10–digit PUID:		
Lecturer:		
Recitation Instructor:	•	
Recitation Time:		

Instructions:

- 1. This package contains 12 problems worth 8 points each.
- 2. Please supply <u>all</u> information requested. On the scantron sheet, print your name, your division–section number and 10 digit PUID number in addition to filling in the corresponding circles. You get 4 points for supplying all information correctly.
- 3. Work only in the space provided, or on the backside of the pages. Circle your choice for each problem in this booklet, and mark your answer on the scantron sheet.
- 4. No books, notes, calculator or any electronic devices, please.

1 B	2B	3E	48	5D	6 B
7B	8D	98	10A	11C	12 E

- 1. A spherical snowball is melting evenly in such a way that its volume decreases at the rate of 1 cm³ per minute. At what rate is the radius decreasing when it is 3 cm long? (Recall the volume of the sphere is $4\pi r^3/3$, where r is the radius.)
 - A. 18π cm/min
 - B. $\frac{1}{36\pi}$ cm/min
 - C. 36π cm/min
 - D. $\frac{1}{9\pi}$ cm/min
 - E. 9π cm/min

- 2. What approximate value do you get for ln 1.1 if you use linear approximation at 1?
 - A. 1.1
 - B. 0.1
 - C. 1/11
 - D. 9/11
 - E. 1

- 3. The maximum value of $2x^3 3x^2 + 1$ over the interval [-1, 2] is
- A. 0
- B. 1
- C. 8
- D. 6
- E. 5

4. The minimum value of $\sqrt{x + \frac{1}{16x^2}}$ for x > 0 is

- A. 2
- B. $\frac{\sqrt{3}}{2}$
- C. $\frac{\sqrt{2}}{2}$
- D. 1/2
- E. $\frac{\sqrt{3}}{4}$

- 5. Consider the function $f(x) = x^5 3x + a$. Which of the following statements are always true, regardless of what the constant a is?
 - I. f has at least one root on [1, 2];
 - II. f has at most one root on [1, 2];
- III. f is increasing on [1, 2].

- A. Only I.
- B. Only II.
- C. Only III.
- D. Only II and III.
- E. All are true.

- 6. Supposing h(x) is a differentiable function defined for $-\infty < x < \infty$, and x_0 is a real number, which is true?
 - I. If h has a local minimum at x_0 , then $h(x_0) < 0$.
 - II. If h has a local minimum at x_0 , then $h'(x_0) = 0$.
- III. If $h'(x_0) = 0$, then h has a local minimum or maximum at x_0 .
 - A. Only I.
 - B. Only II.
 - C. Only III.
 - D. Only I and II.
 - E. Only II and III.

- 7. The second derivative of a function φ is given by $\varphi''(x) = (x-1)^2 x(x+1)$. Then φ is concave down on
 - A. $(-\infty, -1)$.
 - B. (-1,0).
 - C. (0,1).
 - D. $(0,\infty)$.
 - E. $(-\infty, -1)$ and $(1, \infty)$.

- 8. The function $3x^5 5x^3$ has
 - A. a local minimum at -1 and a local maximum at 1;
 - B. a local minimum at -1 and 1;
 - C. an inflection point at -1 and a local minimum at 0;
 - D. a local maximum at -1 and a local minimum at 1;
 - E. inflection points at -1, 1, and 0.

 $9. \lim_{x\to 0} \frac{x\sin x}{1-\cos 2x} =$

- A. $\frac{1}{4}$
- B. $\frac{1}{2}$
- C. 0
- D. -1
- E. ∞

10. $\lim_{x \to \pi/2} \tan x \ln \sin x =$

- A. 0
- B. 1
- C. -1
- D. $\ln \frac{\pi}{2}$
- E. $-\infty$

11. Which could be the graph of the function φ if its derivative is $\varphi'(x) = \frac{x+2}{x^2-1}$

- 12. If the sum of the length of the legs of a right triangle is 7, what is the minimum length of its hypotenuse?
 - A. 8
 - B. 7
 - C. 5
 - D. $5\sqrt{2}$
 - E. $\frac{7\sqrt{2}}{2}$