1. A radioactive substance has half—life of 3 years. How much of a 100g sample remains after 8 years? Answers are in grams.

A.
$$100\left(\frac{1}{2}\right)^{8/3}$$

B.
$$100 \frac{\ln 1/2}{8/3}$$

C.
$$100 \frac{\ln 1/2}{\ln 8/3}$$

D.
$$100 \frac{\ln 8/3}{\ln 1/2}$$

E.
$$100 \left(\frac{4}{3}\right)^8$$

2. If $x^3 + y^3 = 2x + 7$ and dy/dt = 2, find dx/dt when x = 1.

C.
$$-24$$

- 3. A street light is mounted at the top of a 12 ft vertical pole. A 5 ft woman walks away from the pole on level ground at a speed of 6 ft/s. How fast is the woman's shadow growing when she is 30 ft from the pole?
 - A. 21/6
 - B. 6
 - C. 30/17
 - D. 30/7
 - E. 42/5

4. Linear approximation gives $(15.8)^{5/4} \approx$

- A. $31\frac{1}{3}$
- B. $31\frac{1}{5}$
- C. $31\frac{4}{5}$
- D. $31\frac{3}{4}$
- E. $31\frac{1}{2}$

- 5. The absolute maximum of f(x) = x(x-3) on the interval [-1,3] is
 - A. -9/4
 - B. 0
 - C. 4
 - D. 6
 - E. 10

- 6. Suppose g is a differentiable function on $(-\infty, \infty)$ and $2 \le g'(x) \le 6$ for all x in (1,3). Then g(3) g(1) must lie in
 - A. [2, 6]
 - B. [4, 12]
 - C. [1, 3]
 - D. [5, 18]
 - E. [-6, 6]

7. Which is true? The function $x - e^x$ has

- I. a local maximum at x = 0
- II. a local minimum at x = 0
- III. an inflection point at x = 0

- A. Only I.
- B. Only II.
- C. Only III.
- D. Only I and III.
- E. Only II and III.

8. On which interval is the function $x^4 - 2x^3 - 12x^2$ concave up?

- A. (-1,2)
- B. $(2,\infty)$
- C. $(1-\sqrt{13},1+\sqrt{13})$
- D. $(-\infty, 1 + \sqrt{13})$
- E. $(0,\infty)$

$$9. \lim_{x\to\infty} \frac{\ln(1+x)}{\ln x} =$$

- A. 0
- B. 1
- C. e
- D. ∞
- E. x/(x+1)

10.
$$\lim_{x \to 0^+} \sqrt{1 + \frac{1}{x}} - \sqrt{\frac{1}{x}} =$$

- A. 0
- B. 1/2
- C. 1
- D. $\sqrt{2}$
- E. ∞