MA 161 EXAM III

Name
nine-digit Student ID number
Division and Section Numbers
Recitation Instructor

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 12 problems, each worth 8 points. You get 4 points for your TA's name.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

- 1. Let $f(x) = \frac{x}{4+x^2}$ for x in the interval [1, 8]. Then f(x) attains its absolute maximum at x equal
 - a. 1
 - b. 2
 - c. 4
 - d. 8
 - e. none of these.

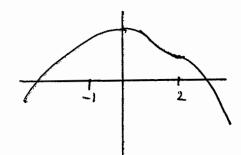
- 2. The function $f(x) = x^3 + 6x^2 + 9x$ is decreasing
 - a. just on the interval (1,3).
 - b. just on the interval (-3,-1).
 - c. just on the intervals $(-\infty,-3)$ and $(-1,\infty)$.
 - d. just on the intervals $(-\infty,1)$ and $(3,\infty)$.
 - e. nowhere.

- 3. If f(x) has its derivative satisfying $f'(x) = (x-1)(x-2)^2(x-3)$ then f(x) has
 - a. a local minimum just at 1 and a local maximum just at 3.
 - b. local minimums just at 1 and 2, and a local maximum just at 3.
 - c. local minimums just at 1 and local maximums just at 2 and 3.
 - d. a local minimum just at 3, and a local maximum just at 1.
 - e. local minimums just at 1 and 3, and a local maximum just at 2.

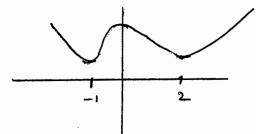
- 4. The function $f(x) = e^{-x^2}$ is concave down
 - a. on $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
 - b. on $(-\frac{1}{2}, \frac{1}{2})$.
 - c. on (-1,1).
 - d. on $(-\infty, -1)$ and $(1, \infty)$.
 - e. nowhere.

- 5. The function $f(x) = 8x^2 x^4$ has inflection point(s) for the x just in the set
 - a. $\{-2, 2\}$.
 - b. $\{-2, -\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, 2\}.$
 - c. $\{0\}$.
 - d. $\{-\frac{2}{3}, \frac{2}{3}\}$.
 - e. $\{-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\}$.

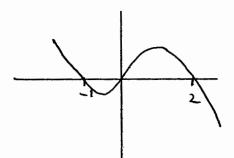
- 6. If f is differentiable with f'(x) > 0 on $(-\infty, -1)$ and (0,2), and f'(x) < 0 on (-1,0) and $(2,\infty)$ then the graph for f(x) looks most like
 - a.



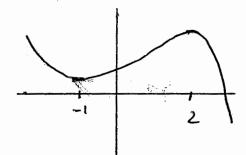
b.



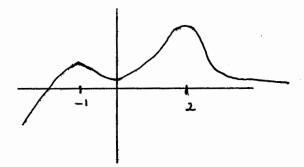
c.



d.



e.



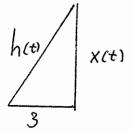
- 7. The linear approximation of $f(x) = x^{1/2}$ at a = 16 is used to find the approximate value for $17^{1/2} 4$. The approximate value found is
 - a. $-\frac{1}{8}$.
 - b. $\frac{1}{4}$.
 - c. $-\frac{1}{4}$.
 - d. $\frac{1}{8}$.
 - e. none of these.

- 8. $\lim_{x \to \infty} \frac{x^2}{e^x}$ equals
 - a. ∞ .
 - b. 0.
 - c. 1.
 - d. 2.
 - e. none of these.

- 9. $\lim_{x\to 0} \frac{(e^x + e^{-x} 2)}{x^2}$ equals
 - a. ∞ .
 - b. 0.
 - c. 1.
 - d. 2.
 - e. none of these.

- 10. $\lim_{x\to 0^+} (1+2x)^{\frac{1}{x}}$ equals
 - a. e^2 .
 - b. 2.
 - c. ln2.
 - d. 0.
 - e. none of these.

- 11. Two sides, of the right triangle pictured, change with time. Find x'(t) when h'(t) = 8 in/min and x(t) = 4 in.
 - a. 2 in/min.
 - b. 5 in/min.
 - c. 10 in/min.
 - d. 20 in/min.
 - e. 40 in/min.



- 12. A girl walks east on a beach and is observed from a boat 100 ft from shore. Determine x'(t) when x(t) = 100 ft and $\theta'(t) = 4$ radians/min.
 - a. 200 ft/min.
 - b. 400 ft/min.
 - c. 800 ft/min.
 - d. 1200 ft/min.
 - e. 1600 ft/min.

