.

Name_____

10-digit PUID_____

RECITATION Section Number and time_____

Recitation Instructor_____

Lecturer____

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet. On the scantron sheet also fill in the little circles for your name, section number and PUID.
- 2. This booklet contains 12 problems, each worth 8 points (except problems 3,4,7 and 9 are worth 9 points each). The maximum score is 100 points. The test booklet has 7 pages, including this one.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators or any electronic devices are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

1) A tank has the shape of an inverted circular cone with radius 2 m and height 8 m. If water is poured into the tank at a rate of 4 m³ per minute, find the rate at which the water level is rising (in m per minute) when the water is 4 m deep.

A)
$$\frac{4}{\pi}$$

B) $\frac{2}{\pi}$
C) $\frac{8}{3\pi}$
D) $\frac{3}{\pi}$
E) $\frac{4}{3\pi}$

2) Use a linear approximation to compute the approximate value of $\sqrt[3]{8.06}$.

- A) 2.04
- B) 2.02
- C) 2.005
- D) 2.01
- E) 2.0025

3) If $f(x) = x^3 + x - 1$ on the interval [0, 2], find a number c that satisfies the Mean Value Theorem.

A)
$$\frac{2}{\sqrt{3}}$$

B) $\sqrt{2}$
C) $\sqrt{\frac{5}{3}}$
D) $\frac{\sqrt{3}}{3}$
E) $\frac{4}{\sqrt{3}}$

- 4) If m_1 is the minimum of $f(x) = x^3 + 3x^2 9x$ on [0, 2] and m_2 is the maximum, find $m_1 + m_2$.
 - A) 7
 B) -3
 C) 5
 D) 2
 E) -52

MA 161	EXAM 3	Fall 2010	Name	Page $4/7$				
5) if $f(x) = \sinh(\ln x)$, calculate $f'(2)$.								
			A) $\frac{3}{8}$					
			B) $\frac{5}{4}$					
			C) $\frac{3}{4}$					
			D) $\frac{5}{8}$					
			E) $\frac{5}{2}$					

6) If $f(t) = t^2 + 4\cos t$ on $(0, 2\pi)$ find the interval(s) where the graph of f is concave upward.

A) $\left(0, \frac{\pi}{6}\right) \cup \left(\frac{11\pi}{6}, 2\pi\right)$ B) $\left(\frac{\pi}{3}, \frac{5\pi}{3}\right)$ C) $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$ D) $\left(\frac{\pi}{6}, \frac{11\pi}{6}\right)$ E) $\left(0, \frac{\pi}{3}\right) \cup \left(\frac{5\pi}{3}, 2\pi\right)$ 7) Let $f(x) = 2x^3 - 3x^2$. f has

- A) 1 local max and 2 points of inflection
- B) 1 local max and 1 point of inflection
- C) 1 local min and 2 points of inflection
- D) 1 local min and 1 point of inflection
- E) 1 local min, 1 local max and 1 point of inflection

8) Find the least distance between the hyperbola $x^2 - y^2 = 1$ and the point (4, 0).

- A) 2
- B) 4
- C) $\sqrt{7}$
- D) $\sqrt{8}$
- E) 4

MA 161	EXAM 3	Fall 2010	Name	Page 6/7
9) $\lim_{x \to 0}$	$\frac{\sin x - x}{\tan x - x} =$			
				A) $-\frac{1}{2}$

B) -1C) 0 D) $\frac{1}{2}$

E) 1

10) $\lim_{x \to 0^+} (1 - 3x)^{1/5x} =$

A) 1 B) e^{-15} C) $e^{-3/5}$ D) $e^{-5/3}$ E) $e^{-1/15}$ Name.

11) Let $f'(x) = (x+1)(x-1)^2(x-2)$. f has

- A) no local maxima and 2 local minima
- B) 2 local maxima and no local minima
- C) 1 local maximum and 2 local minima
- D) 2 local maxima and 1 local minimum
- E) 1 local maximum and 1 local minimum

12) The graph of f' is given below, $a \le x \le b$.

- A) f has exactly 2 points of inflection and exactly 4 local extrema.
- B) f has exactly 2 points of inflection and exactly 3 local extrema.
- C) f has exactly 4 points of inflection and exactly 3 local extrema.
- D) f has exactly 3 points of inflection and exactly 4 local extrema.
- E) f has exactly 3 points of inflection and exactly 5 local extrema.