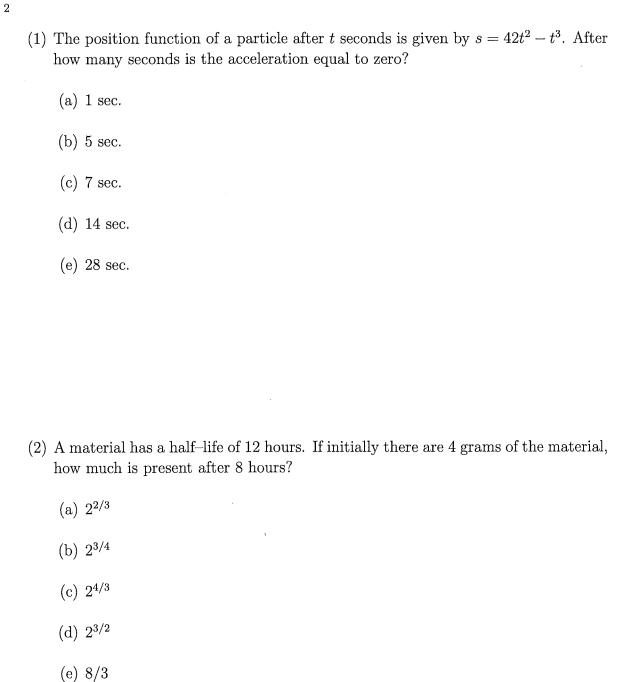
MATH 161 – FALL 2009 – THIRD EXAM – NOVEMBER 2009 TEST NUMBER 01

STUDENT NAME		And the second second second	
STUDENT ID	27A 44 73 73		
LECTURE TIME			4
RECITATION INSTRUCTOR			 ····
RECITATION TIME			
	INSTRUCTIONS		

- 1. Fill in all the information requested above and the version number of the test on your scantron sheet.
- 2. This booklet contains 14 problems, each worth 7 points. There are two free points. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it is this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.



(3)	Two people	start from t	he same point.	One walks	s east at	4 mi./	hr. and tl	ne other
	walks north	at 2 mi./hr.	How fast is th	e distance	between	them	changing	after 10
	hours?							

- (a) $\sqrt{20}/2 \text{ mi./hr.}$
- (b) $\sqrt{20}$ mi./hr.
- (c) $2\sqrt{20}$ mi./hr.
- (d) $6\sqrt{20}$ mi./hr.
- (e) $10\sqrt{20} \text{ mi./hr.}$

(4) A balloon is rising vertically from a point on the ground that is 60 feet from a ground–level observer. If the balloon is rising at a rate of 24 feet/sec., how fast is the angle of elevation between the observer and the balloon increasing when this angle is $\frac{\pi}{3}$?

- (a) 1/10 radians/sec.
- (b) 1/15 radians/sec.
- (c) 3/10 radians/sec.
- (d) $4\sqrt{3}/15$ radians/sec.
- (e) 8/5 radians/sec.

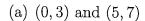
- (5) Use a linearization to approximate the value of $\sqrt[3]{27.01}$:
 - (a) $3 + \frac{1}{30}$
 - (b) $3 + \frac{1}{90}$
 - (c) $4 + \frac{1}{900}$
 - (d) $3 + \frac{1}{270}$
 - (e) $3 + \frac{1}{2700}$

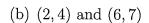
- (6) Let $f(x) = x^3 3x^2 + 3$. Find all values of x where f has a local maximum.
 - (a) x = 0, x = 2
 - (b) x = 1
 - (c) x = 2
 - (d) x = 0
 - (e) x = 1, 2

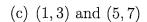
- (7) Find all open intervals in $[0, 2\pi]$ where the function $f(t) = \sin t + \cos t$ is decreasing.
 - (a) $(\frac{\pi}{4}, \frac{3\pi}{4})$
 - (b) $(\frac{\pi}{4}, \frac{5\pi}{4})$
 - (c) $(\frac{\pi}{2}, \frac{3\pi}{2})$
 - (d) $(0, \frac{\pi}{4}) \cup (\frac{3\pi}{4}, 2\pi)$
 - (e) $(0, \frac{\pi}{4}) \cup \frac{(5\pi}{4}, 2\pi)$

- (8) If f(x) is continuous on [5, 7] and differentiable on (5, 7) and its derivative satisfies $3 \ge f'(x) > 2$ for every x in the interval (5, 7), we can conclude that f(7) f(5) is in the following interval:
 - (a) (4,6)
 - (b) (3,7)
 - (c) (4,6]
 - (d) [3, 7]
 - (e) (0,1]

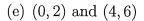
(9) The graph of the first derivative of a function f is sketched below. We can conclude that f is concave upward in the following intervals

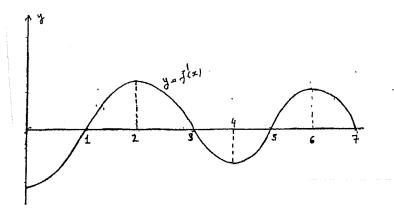




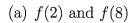


(d)
$$(2,4)$$
 and $(6,7)$





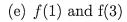
(10) If f is a function such that the graph of f'(x) is as sketched below, we can conclude that the following are local minimum values of f.

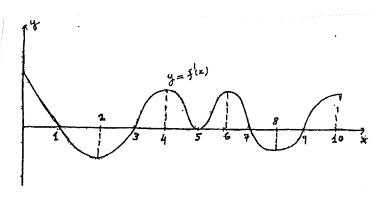


(b)
$$f(1)$$
 and $f(5)$

(c)
$$f(1)$$
, $f(3)$, $f(5)$ and $f(7)$

(d)
$$f(3)$$
 and $f(9)$



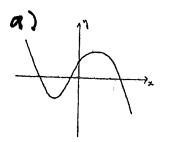


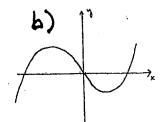
(11) The limit

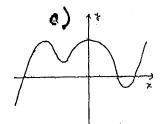
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$
 is equal to

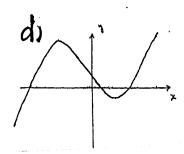
- (a) -1/6
- (b) 1/3
- (c) 1
- (d) 1/4
- (e) -1/3

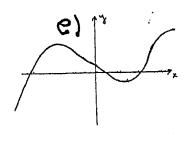
(12) The graph of $f(x) = 2x^3 + 3x^2 - 12x + 1$ looks most like which of the following?











- (13) The point on the line y = x + 7 which is closest to (1, 2) is:
 - (a) (1,8)
 - (b) (-2,5)
 - (c) (-1,6)
 - (d) (0,7)
 - (e) (3, 10)

- (14) The maximum and minimum values of $f(x) = x^2 + 4x 3$ on the interval [-3, 3] are respectively
 - (a) 18 and -5
 - (b) 18 and -6
 - (c) 18 and -7
 - (d) 24 and -6
 - (e) 24 and -7