## $\begin{array}{c} {\rm MA~16100} \\ {\rm EXAM~2~Version~A} \\ {\rm March~7,~2023} \end{array}$

| NAME                                                            | YOUR TA'S NAME                                                                                                                                                              |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STUDENT ID #                                                    | RECITATION TIME                                                                                                                                                             |
| Write your final answers in the bo                              | exes provided, as applicable.                                                                                                                                               |
| The problems are numbered 1–14.                                 |                                                                                                                                                                             |
| Extra scratch paper is not permit                               | ted. Write all your work in this exam booklet.                                                                                                                              |
| let. If you don't finish before 7:20,                           | you may leave the room after turning in the exam bookyou MUST REMAIN SEATED until your TA comes and may not leave the room before 6:50.                                     |
|                                                                 | EXAM POLICIES                                                                                                                                                               |
| 1. Students may not open the                                    | exam until instructed to do so.                                                                                                                                             |
| 2. Students must obey the order                                 | ers and requests by all proctors, TAs, and lecturers.                                                                                                                       |
| 3. No student may leave in the                                  | first 20 min or in the last 10 min of the exam.                                                                                                                             |
| they should not even be in si                                   | any electronic devices are not allowed on the exam, and ight in the exam room. Students may not look at anybody municate with anybody else except, if they have a question, |
| 5. After time is called, the studing their seats, while the TAs | lents have to put down all writing instruments and remain swill collect the exams.                                                                                          |
| · ·                                                             | and any act of academic dishonesty may result in severe violators will be reported to the Office of the Dean of                                                             |
| I have read and understand the ex                               | kam rules stated above:                                                                                                                                                     |
| STUDENT SIGNATURE:                                              |                                                                                                                                                                             |

This page is intentionally blank and may be used for extra scratch work, but it will not be evaluated for credit.

$$f(x) = \frac{1}{2x^3} + 3\pi^2$$

$$f'(x) =$$

$$f(x) = \frac{x}{1 + xe^x}$$

$$f'(x) =$$

$$f(x) = -\csc x \cot x$$

$$f'(x) =$$

$$f(x) = \cos^2(x^4)$$

$$f'(x) =$$

$$f(x) = \sqrt{\tan\left(\frac{x}{2}\right)}$$

$$f'(x) =$$

$$f(x) = 3^x + \ln(x^2 + 1)$$

$$f'(x) =$$

| $f(x) = \tan^{-1}(3x)$ |
|------------------------|
|                        |
| f'(x) =                |

8. (6 points) Find 
$$\frac{dy}{dx}$$
.

$$y = x^{2x}$$
 with domain  $x > 0$ 

$$\frac{dy}{dx} =$$

- **9.** (4 points each) Assume that f(0) = 4 and f'(0) = 2 for each question below. No partial credit. Simplify your answer completely.
  - (a) Find g'(0), if  $g(x) = f(x)e^x$ .

$$g'(0) =$$

(b) Find h'(0), if  $h(x) = \frac{1}{\sqrt{f(x)}}$ .

$$h'(0) =$$

(c) Find k'(4), if  $k(x) = f^{-1}(x)$ .

$$k'(4) =$$

10. (8 points) Find the slope of the line tangent to the curve

$$x^2 + 2y = xy^2$$

at the point (2,-1). Show your work.

 $m_{tan} =$ 

| 11. | (8 points) An object thrown vertically upward reaches a height of t seconds. What is the height of the object at its highest point? Use Calculus and show your work. | $6 + 16t - 16t^2$ f | eet after |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
|     |                                                                                                                                                                      |                     | feet      |
|     | l                                                                                                                                                                    |                     |           |

| <b>12.</b> | (8 points) A 10-ft ladder is leaning against a vertical wall, and the top of the ladder is              |
|------------|---------------------------------------------------------------------------------------------------------|
|            | sliding down the wall at a speed of $\frac{1}{4}$ ft/s. How fast is the foot of the ladder sliding away |
|            | from the wall when the foot of the ladder is 6 ft away from the wall?                                   |
|            | Show your work.                                                                                         |

ft/s

13. (8 points) An ideal gas at a fixed temperature satisfies the equation

$$pV = C$$
,

where p is pressure measured in kPa= kilopascals  $=\frac{kJ}{m^3}, V$  is volume in  $m^3$ , and C is held constant at 240 kJ. At a certain instant the gas occupies a volume of 2  $m^3$ , and the pressure is increasing at a rate of 3  $\frac{kPa}{s}$ . Find the rate of change of the volume at this instant.

Show your work.

 $\frac{m^3}{s}$ 

14. (8 points) List the x value(s) at which  $f(x) = x + \sin x$  has an absolute maximum on the interval  $[0, 2\pi]$ . Justify your answer by showing your work.

f attains its maximum on  $[0,2\pi]$  when x is

This page is intentionally blank and may be used for extra scratch work, but it will not be evaluated for credit.