1. The graph of $y=f(x)$ is shown below.

Which of the following could be the graph of $y=f^{\prime}(x)$?

B.

C.

D.

E.

2. Let $f(x)= \begin{cases}x, & x \leq-1 \\ x+1, & -1<x \leq 0 \\ x^{2}+1, & 0<x \leq 1 \\ 2 x, & 1<x\end{cases}$

Find the points at which f is NOT differentiable.
A. $x=0, x=1$, and $x=-1$
B. $x=0$ and $x=1$
C. $x=0$ and $x=-1$
D. $x=1$ and $x=-1$
E. $x=0$
3. At time 0 a ball is thrown directly upward from a platform 10 m tall. Its height above the ground after t seconds is $s=-5 t^{2}+5 t+10$, where s is in meters. The ball hits the ground after 2 seconds. What is its velocity at impact?
A. 0
B. $-5 \mathrm{~m} / \mathrm{s}$
C. $-10 \mathrm{~m} / \mathrm{s}$
D. $-15 \mathrm{~m} / \mathrm{s}$
E. $-20 \mathrm{~m} / \mathrm{s}$
4. At which point(s) does the curve $y=x^{3}-6 x^{2}+12 x+7$ have a horizontal tangent?
A. $x=0$ and $x=1$
B. $x=1$ and $x=2$
C. $x=0$ and $x=2$
D. $x=1$
E. $x=2$
5. If $f(x)=\sqrt{x} e^{x-4}$, then $f^{\prime}(4)=$
A. $\frac{9}{4}$
B. $\frac{1}{2}$
C. 0
D. $\frac{5}{4}$
E. $\frac{3}{4}$
6. If $f(x)=(1+\sin 2 x)^{10}$, then $f^{\prime}\left(\frac{\pi}{2}\right)=$
A. 1
B. 10
C. -10
D. 20
E. -20
7. If $g(x)=\tan \left(\frac{\pi}{2} f(x)\right)$, where $f(0)=0$ and $f^{\prime}(0)=2$, then $g^{\prime}(0)=$
A. 4
B. $\frac{\pi}{2}$
C. π
D. 2
E. Cannot be determined
8. If $f(x)=\ln \sqrt{\frac{x^{3}}{1-x^{2}}}$, then $f^{\prime}(x)=$
A. $\frac{1}{2}\left(\frac{3}{x}-1\right)$
B. $\frac{1}{2}\left(\frac{3}{x}+\frac{2 x}{1-x^{2}}\right)$
C. $\frac{1}{2}\left(\frac{3}{x}-\frac{2 x}{1-x^{2}}\right)$
D. $\frac{1}{2}\left(\frac{3}{x}+1\right)$
E. $\frac{1}{2}\left(\frac{5}{x}\right)$
9. Find an equation for the line tangent to the graph of $y=\frac{x^{3}}{\ln x}$ at the point $\left(e, e^{3}\right)$.
A. $y=2 e^{2} x-e^{3}$
B. $y=2 e^{2} x+e^{3}-3$
C. $y=2 e^{2} x+e$
D. $y=-e^{2} x+e$
E. $y=-e^{2} x-e$
10. Use implicit differentiation to find $\frac{d y}{d x}$ at the point $(1,2)$ if $x^{4}-3 x^{2} y+y^{2}+y^{3}=7$.
A. $\frac{-2}{5}$
B. $\frac{1}{2}$
C. $\frac{4}{13}$
D. $-\frac{3}{5}$
E. $\frac{8}{13}$
11. Let $y=x^{\tan x}$. Find $\frac{d y}{d x}$.
A. $\frac{d y}{d x}=x^{\tan x}(\sec x \tan x \ln x+\tan x)$
B. $\frac{d y}{d x}=x^{\tan x}\left(\sec ^{2} x\right)\left(\frac{1}{x}\right)$
C. $\frac{d y}{d x}=x^{\tan x}\left(\sec ^{2} x \ln x+\frac{\tan x}{x}\right)$
D. $\frac{d y}{d x}=x^{\tan x-1}(\tan x)$
E. $\frac{d y}{d x}=x^{\tan x}\left(\sec ^{2} x\right)$
12. A spherical balloon increases in radius by $\frac{1}{2}$ inch per minute. Find the average rate of change of the volume of the balloon $\left(\frac{\text { inches }^{3}}{\text { minute }}\right)$ when the radius increases from 2 inches to 4 inches (Volume of sphere: $V=\frac{4}{3} \pi r^{3}$).
A. $28 \pi \frac{\text { inches }^{3}}{\text { minute }}$
B. $48 \pi \frac{\text { inches }^{3}}{\text { minute }}$
C. $16 \pi \frac{\text { inches }^{3}}{\text { minute }}$
D. $\frac{64 \pi}{3} \frac{\text { inches }^{3}}{\text { minute }}$
E. $\frac{56 \pi}{3} \frac{\text { inches }^{3}}{\text { minute }}$
13. 60% of a radioactive substance decays in 3 hours. What is the half-life of the substance?

$$
\begin{aligned}
& \text { A. } 3\left(\ln \frac{1}{5}\right) \text { hours } \\
& \text { B. } 3\left(\frac{\ln \frac{1}{2}}{\ln \frac{2}{5}}\right) \text { hours } \\
& \text { C. } 3\left(\frac{\ln \frac{1}{2}}{\ln \frac{5}{2}}\right) \text { hours } \\
& \text { D. } 3\left(\frac{\ln \frac{5}{2}}{\ln \frac{1}{2}}\right) \text { hours } \\
& \text { E. } 3\left(\frac{\ln \frac{2}{5}}{\ln \frac{1}{2}}\right) \text { hours }
\end{aligned}
$$

14. Two sides of a triangle are 3 in . and 7 in . and the angle between them is increasing at 0.2 radians per minute. Find the rate at which the area of the triangle is increasing when the angle between the sides is $\frac{\pi}{6}$?
A. $\frac{21 \sqrt{3}}{5} \frac{\text { inches }^{2}}{\text { minute }}$
B. $\frac{21}{10} \frac{\text { inches }^{2}}{\text { minute }}$
C. $\frac{21 \sqrt{3}}{10} \frac{\text { inches }^{2}}{\text { minute }}$
D. $\frac{21}{20} \frac{\text { inches }^{2}}{\text { minute }}$
E. $\frac{21 \sqrt{3}}{20} \frac{\text { inches }^{2}}{\text { minute }}$
15. A 5 foot ladder standing on level ground leans against a vertical wall. The bottom of the ladder is pulled away from the wall at $2 \mathrm{ft} / \mathrm{sec}$. How fast is the AREA under the ladder changing when the top of the ladder is 4 feet above the ground?

