Name		

10-digit PUID_____

RECITATION Division and Section Numbers_____

Recitation Instructor_____

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 12 problems, each worth $8\frac{1}{3}$ points. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators or any electronic devices are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

1.
$$\lim_{x \to -\infty} \sqrt{4x^2 + 2x} + 2x =$$

A. 0 B. ∞ C. $-\infty$ D. $\frac{1}{2}$ E. $-\frac{1}{2}$

2. Let
$$f(x) = \frac{1}{\sqrt{x}}$$
. Which of the following equals $f'(4)$?
I. $\lim_{h \to 0} \frac{\frac{1}{\sqrt{4+h}} - \frac{1}{\sqrt{4}}}{h}$
II. $\lim_{x \to 4} \frac{\frac{1}{\sqrt{4}} - \frac{1}{\sqrt{x}}}{x-4}$
III. $\frac{-1}{16}$

- A. I. only
- B. II. only
- C. III. only
- D. I. and III. only
- E. I. and II. and III.

MA 161

Exam 2

Fall 2007

3. For what values of x does the graph of

$$y = 2x^3 + 3x^2 - 36x + \ln(2)$$

have horizontal tangents?

- A. x = -2, -3B. x = 2, -3C. x = -2, 3
- D. x = 2, 3
- E. None of the above.

4.
$$\frac{d}{dx}\left(\frac{e^x}{1+x}\right) =$$

A.
$$\frac{e^{x} - 1}{(1+x)^{2}}$$

B. $\frac{xe^{x}}{(1+x)^{2}}$
C. e^{x}
D. $\frac{e^{x} + 1 + x}{(1+x)^{2}}$
E. $\frac{e^{x} - 1 - x}{(1+x)^{2}}$.

Exam 2

A. $\frac{1}{3}$

B. $\frac{13}{6}$

C. 12

5. If
$$f(x) = \sqrt{x}g(x)$$
, $g(9) = 12$ and $g'(9) = 2$, then $f'(9) =$

E. 6

D. 8

6. A table of values for f, g, f' and g' is given.

х	f(x)	g(x)	f'(x)	g'(x)
1	1	2	7	6
2	4	3	2	5
3	5	4	4	2

If h(x) = f(g(x)), then h'(2) =

A. 6

- B. 10
- C. 20
- D. 21
- E. 25

7. If
$$g(x) = \log_3(x^4)$$
, then $g'(x) =$

A.
$$\frac{4}{x \ln 3}$$
.
B.
$$\frac{4}{x}$$
.
C.
$$\frac{4 \ln 3}{x}$$
.
D.
$$\frac{1}{x^4 \ln 3}$$
.
E.
$$\frac{1}{4x^3 \ln 3}$$

8. Assume y is a differentiable function of x. If $\sqrt{xy} = x^2y - 6$, then the slope of the tangent line at the point (1,9) is

A.
$$\frac{-99}{5}$$

B. 40
C. -45
D. $\frac{-99}{2}$
E. $\frac{81}{5}$

MA 161

9. What is the derivative of $x^{\cos(x)}$ at $x = \pi/2$?

A. Undefined. B. $\frac{\pi}{2}$. C. $\frac{\pi}{2} + 1$. D. $\ln\left(\frac{2}{\pi}\right)$. E. $\ln\left(\frac{\pi}{2}\right)$.

10. The half-life of a certain element is 20 years. Suppose we have a 50-mg sample. After how long will only 2 mg remain?

A.
$$20 \frac{\ln(1/2)}{\ln(1/50)}$$
 years.
B. $20 \frac{\ln(25)}{\ln(1/2)}$ years.
C. $20 \frac{\ln(1/25)}{\ln(1/2)}$ years.
D. $20 \frac{\ln(1/2)}{\ln(1/25)}$ years.
E. $20 \frac{\ln(1/2)}{\ln(25)}$ years.

MA 161

Exam 2

11. Two people start from the same point at the same time. One walks north at 2 mi/h and the other walks west at 4 mi/h. How fast is the distance between them changing after 30 minutes?

A.
$$\frac{20}{\sqrt{5}}$$
 mph.
B. $\frac{10}{\sqrt{5}}$ mph.
C. $\frac{6}{\sqrt{5}}$ mph.
D. $\frac{5}{\sqrt{5}}$ mph.
E. $\frac{2}{\sqrt{5}}$ mph.

12. A runner sprints around a circular track of radius 50 m at a constant speed of 5 m/s. The runner's friend is standing at a distance 100 m from the center of the track. How fast is the distance between the friends changing when the distance between them is 120 m and the runner is running away from the friend?

A.
$$\frac{(5,000)\left(\frac{\sqrt{9639}}{100}\right)\left(\frac{1}{10}\right)}{240} \text{ m/s.}$$

B.
$$\frac{(5,000)\left(\frac{\sqrt{9425}}{100}\right)\left(\frac{1}{10}\right)}{240} \text{ m/s.}$$

C.
$$\frac{(10,000)\left(\frac{\sqrt{9639}}{100}\right)\left(\frac{1}{5}\right)}{240} \text{ m/s.}$$

D.
$$\frac{(10,000)\left(\frac{\sqrt{9425}}{100}\right)\left(\frac{1}{10}\right)}{240} \text{ m/s.}$$

E.
$$\frac{(10,000)\left(\frac{\sqrt{9639}}{100}\right)\left(\frac{1}{10}\right)}{240} \text{ m/s.}$$