9/25/2020	
-----------	--

Midterm	Exam 1

Student: Date:	Instructor: Jonathon Peterson Course: MA 16100 - Plane Analytic	Assignment: Midterm Exam 1
	Geometry and Calculus I (coordinator)	

1. Find all vertical asymptotes of the given function.

$$f(x) = \frac{-x^2 + 16}{x^2 + 5x + 4}$$

A. $x = -1$
B. $x = -1, x = 4$
C. $x = 1, x = -4$
D. $x = -1, x = -4$

2. Find $\lim_{x \to 2} \frac{x+5}{x^2+8x+15}$.

$$\lim_{x \to 2} \frac{x+5}{x^2 + 8x + 15} = \underline{\qquad}$$

*3. Find the limit.

$$\lim_{x \to 4} \frac{24x - 6x^2}{2 - \sqrt{x}}$$

$$\lim_{x \to 4} \frac{24x - 6x^2}{2 - \sqrt{x}} =$$
(Type an integer or a simplified fraction.)

4. Write the trigonometric expression as an algebraic expression in u.

$$\sin\left(\csc^{-1}u\right)$$
$$\sin\left(\csc^{-1}u\right) = _$$

(Type an exact answer, using radicals as needed.)

5. Determine if the following function has a slant asymptote, and if so compute the slant asymptote.

$$f(x) = \frac{x^3 - 1}{x^2 - 5x + 5}$$

• A. The slant asymptote is y = mx + b with m = and b =

O B. There is no slant asymptote

9/25/2020

Midterm Exam 1

6. Graph the function.

7. Analyze the following limit.

$$\lim_{x \to 1^{-}} \frac{x^4 \cos{(\pi x)}}{\ln{(x)}}$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

• A.
$$\lim_{x \to 1^{-}} \frac{x^4 \cos (\pi x)}{\ln (x)} = \underline{\qquad}$$
• B. The limit does not exist and is neither ∞ nor $-\infty$.

8. Determine the value of the constant a for which the function f(x) is continuous at -4.

$$f(x) = \begin{cases} \frac{x^2 + 6x + 8}{x + 4} & \text{if } x \neq -4 \\ a & \text{if } x = -4 \end{cases}$$

The function f(x) is continuous at -4 when a = _____. (Type an integer or a fraction.)

9/25/2020

- *9. For the function g(x) graphed here, find the following limits or state that they do not exist.
 - **a.** $\lim_{x \to -4} g(x)$ **b.** $\lim_{x \to -2} g(x)$ **c.** $\lim_{x \to 0} g(x)$ **d.** $\lim_{x \to -0.8} g(x)$

Midterm Exam 1

a. What is $\lim_{x \to -4} g(x)$? Choose the correct answer below

and, if necessary, fill in the answer box to complete your choice.

• A.
$$\lim_{x \to -4} g(x) =$$

lim $g(x)$ does not exist

B. $x \rightarrow -4$

b. What is $\lim_{x \to -2} g(x)$? Choose the correct answer below

and, if necessary, fill in the answer box to complete your choice.

$$\bigcirc$$
 A. $\lim_{x \to -2} g(x) =$

B. $\lim_{x \to -2} g(x)$ does not exist

c. What is $\lim_{x\to 0} g(x)$? Choose the correct answer below and,

if necessary, fill in the answer box to complete your choice.

$$\bigcirc$$
 A. $\lim_{x \to 0} g(x) =$ _____

B.
$$\lim_{x\to 0} g(x)$$
 does not exist

d. What is $\lim_{x \to -0.8} g(x)$? Choose the correct answer below

and, if necessary, fill in the answer box to complete your choice.

• A.
$$\lim_{x \to -0.8} g(x) =$$

• B.
$$\lim_{x \to -0.8} g(x) \text{ does not exist}$$

10. Solve for all angles θ where $0 \le \theta \le 2\pi$.

 $\sin 2\theta + 2\cos^2\theta = 0$

θ=

(Use a comma to separate answers as needed. Type an exact answer in terms of π .)

11.

Consider the function $f(x) = \frac{9 e^{x} + 4 e^{x}}{e^{x} - 4 e^{x}}$	-x. Use various limits to find the asymptotes.

a) Compute $\lim_{x \to \infty} f(x) =$

b) Compute $\lim_{x \to -\infty} f(x) =$

c) Determine the vertical asymptote(s). Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice.

 \bigcirc A. The function has one vertical asymptote, x = _____.

_ The function has two vertical asymptotes. The leftmost asymptote is x =_____, and

 \bigcirc **B.** the rightmost asymptote is x =

○ **c.** The function has no vertical asymptotes.