```
Student:
```

\qquad

``` Instructor: Jonathon Peterson
Student: Course: MA 16100 - Plane Analytic
\(\qquad\)
``` Geometry and Calculus I (coordinator)
```

1. Find all vertical asymptotes of the given function.
$f(x)=\frac{-x^{2}+16}{x^{2}+5 x+4}$A. $x=-1$B. $x=-1, x=4$C. $x=1, x=-4$D. $x=-1, x=-4$
2. 

Find $\lim _{x \rightarrow 2} \frac{x+5}{x^{2}+8 x+15}$.
$\lim _{x \rightarrow 2} \frac{x+5}{x^{2}+8 x+15}=$
*3. Find the limit.
$\lim _{x \rightarrow 4} \frac{24 x-6 x^{2}}{2-\sqrt{x}}$
$\lim _{x \rightarrow 4} \frac{24 x-6 x^{2}}{2-\sqrt{x}}=$
(Type an integer or a simplified fraction.)
4. Write the trigonometric expression as an algebraic expression in $u$.
$\boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\operatorname { c s c }}^{-1} \mathrm{u}\right)$
$\boldsymbol{\operatorname { s i n }}\left(\csc ^{-1} u\right)=$ $\qquad$ (Type an exact answer, using radicals as needed.)
5. Determine if the following function has a slant asymptote, and if so compute the slant asymptote.
$f(x)=\frac{x^{3}-1}{x^{2}-5 x+5}$A. The slant asymptote is $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ with $\mathrm{m}=$ $\qquad$ and $\mathrm{b}=$B. There is no slant asymptote
6. Graph the function.
$y=\log _{5}(x-2)$
A.

B.

$\bigcirc$
C.


○.

7. Analyze the following limit.

$$
\lim _{x \rightarrow 1^{-}} \frac{x^{4} \cos (\pi x)}{\ln (x)}
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.A. $\lim _{x \rightarrow 1^{-}} \frac{x^{4} \cos (\pi x)}{\ln (x)}=$ $\qquad$B. The limit does not exist and is neither $\infty$ nor $-\infty$.
8. Determine the value of the constant a for which the function $f(x)$ is continuous at -4 .

$$
f(x)= \begin{cases}\frac{x^{2}+6 x+8}{x+4} & \text { if } x \neq-4 \\ a & \text { if } x=-4\end{cases}
$$

The function $f(x)$ is continuous at -4 when $a=$ $\qquad$ . (Type an integer or a fraction.)
*9. For the function $g(x)$ graphed here, find the following limits or state that they do not exist.
a. $\lim g(x)$ $x \rightarrow-4$
b. $\lim _{x \rightarrow-2} g(x)$
c. $\lim g(x)$ $x \rightarrow 0$
d. $\quad \lim g(x)$ $x \rightarrow-0.8$
a. What is $\lim g(x)$ ? Choose the correct answer below $x \rightarrow-4$ and, if necessary, fill in the answer box to complete your choice.A. $\lim _{x \rightarrow-4} g(x)=$ $\qquad$B. $\lim _{x \rightarrow-4} g(x)$ does not exist
. $x \rightarrow-4$
b. What is $\lim g(x)$ ? Choose the correct answer below $x \rightarrow-2$
and, if necessary, fill in the answer box to complete your choice.A. $\lim _{x \rightarrow-2} g(x)=$ $\qquad$
B. $\lim _{x \rightarrow-2} g(x)$ does not exist
c. What is $\lim _{x \rightarrow 0} g(x)$ ? Choose the correct answer below and, if necessary, fill in the answer box to complete your choice.A. $\lim _{x \rightarrow 0} g(x)=$ $\qquad$B. $\lim _{x \rightarrow 0} g(x)$ does not exist
d. What is $\lim _{x \rightarrow-0.8} g(x)$ ? Choose the correct answer below and, if necessary, fill in the answer box to complete your choice.A. $\lim _{x \rightarrow-0.8} g(x)=$ $\qquad$B. $\lim _{x \rightarrow-0.8} g(x)$ does not exist
10. Solve for all angles $\theta$ where $0 \leq \theta \leq 2 \pi$.
$\sin 2 \theta+2 \cos ^{2} \theta=0$
$\theta=$
(Use a comma to separate answers as needed. Type an exact answer in terms of $\pi$.)
11.

Consider the function $\mathrm{f}(\mathrm{x})=\frac{9 e^{\mathrm{x}}+4 e^{-\mathrm{x}}}{e^{\mathrm{x}}-4 e^{-\mathrm{x}}}$. Use various limits to find the asymptotes.
a) Compute $\lim f(x)=$ $\qquad$
b) Compute $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
c) Determine the vertical asymptote(s). Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice.A. The function has one vertical asymptote, $x=$ $\qquad$ .
The function has two vertical asymptotes. The leftmost asymptote is $x=$ $\qquad$ , and
B. the rightmost asymptote is $\mathrm{x}=$ $\qquad$ .C. The function has no vertical asymptotes.

