- 1. If $\sec x = 3$ and $\frac{3\pi}{2} < x < 2\pi$, then $(\sin x + \cos x) =$
 - A. $\frac{1}{3}(1+\sqrt{8})$
 - B. $\frac{1}{3}(1-\sqrt{8})$
 - C. $\frac{1}{2}(1+\sqrt{8})$
 - D. $\frac{1}{3}(-1+\sqrt{8})$
 - E. $\frac{1}{2}(-1-\sqrt{8})$

2. Find the equation of the line which passes through the centers of these two circles:

$$(x-3)^2 + (y+1)^2 = 1$$
 and $x^2 + y^2 - 4y = 1$.

- A. y = x + 2
- B. y = -2 x
- C. y = 2 x
- D. y = -3x + 2
- E. y = -3x

- 3. If $f(x) = x^2 + e^{(x+1)}$ and g(x) = 4x 1, then $(f \circ g)(2t) =$
 - A. $(2t)^2 + e^{(2t-1)}$
 - B. $(4t+1)^2 + e^{4t}$
 - C. $(4t+1)^2 + e^{(4t+1)}$
 - D. $(8t-1)^2 + e^{(8t-2)}$
 - E. $(8t-1)^2 + e^{8t}$

- 4. The equation of the function g(x) obtained by shifting the graph of $f(x) = \log_{10} x$ three units vertically down and then reflecting it across the x-axis is given by
 - A. $g(x) = 3 \log_{10} x$
 - B. $g(x) = -3 \log_{10} x$
 - C. $g(x) = -3 + \log_{10} x$
 - D. $g(x) = -\log_{10}(x-3)$
 - E. $g(x) = -\log_{10}(x+3)$

- 5. Solve for x: $e^{|2x-1|} = 2$.
 - A. $x = \frac{1}{2} \ln 2$ and $x = -\frac{1}{2} \ln 2$
 - B. $x = 1 + \ln 2$ and $x = \frac{1}{2}(1 + \ln 2)$
 - C. $x = \frac{1}{2}(1 + \ln 2)$ and $x = -\frac{1}{2}(1 + \ln 2)$
 - D. $x = \frac{1}{2}(1 \ln 2)$ and $x = \frac{1}{2}(1 + \ln 2)$
 - $E. \ x = \frac{1}{2} \ln 2$

- 6. The domain of $\ln\left(\frac{4x^2}{x+1}\right)$ is
 - A. $(1,\infty) \cup (-\infty,-1)$
 - B. $(0,\infty) \cup (-\infty,-1)$
 - C. $(-1,0) \cup (0,\infty)$
 - D. (-1,0]
 - E. All real numbers except x = 0 and x = -1

- 7. If $f(x) = \ln(3x 1)$, find the domain of f^{-1}
 - A. $(\frac{1}{3}, \infty)$
 - B. $(0,\infty)$
 - C. $\left(-\frac{1}{3},\infty\right)$
 - D. $(1, \infty)$
 - E. $(-\infty, \infty)$

- 8. Compute $\lim_{x \to 2^-} \frac{x^2 x 2}{(x 2)^2}$
 - A. ∞
 - B. $-\infty$
 - C. 0
 - D. 1
 - E. -1

- 9. Compute $\lim_{t\to 0} \frac{\sqrt{2+t}-\sqrt{2-t}}{t}$
 - A. 2
 - B. $\frac{1}{2\sqrt{2}}$
 - C. $\frac{1}{2}$
 - D. $\frac{1}{\sqrt{2}}$
 - E. $\sqrt{2}$

- 10. Let $G(x) = \begin{cases} 1-x & \text{if } x < 0 \\ x+x^2 & \text{if } 0 \le x < 1 \end{cases}$. Then G is discontinuous 2-x if $x \ge 1$
 - A. Only at 0
 - B. Only at 1
 - C. Only at 0 and 1
 - D. Only at -1, 0, and 1
 - E. The function is continuous everywhere

- 11. Consider the statements
 - I. If $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$, then f is continuous.
 - II. If f is continuous at b, then f(b) does not have to be defined.
 - III. The function $g(x) = \sqrt{1 x^2}$ is continuous only on (-1, 1).

Which are true?

- A. I
- B. I,II
- C. II, III
- D. II
- E. None are true

- 12. Compute $\lim_{x \to \infty} \frac{2x 5x^2}{\sqrt{4x^2 + 9}}$
 - A. $-\frac{5}{2}$
 - B. 1
 - C. $-\frac{5}{4}$
 - D. $\frac{1}{2}$
 - E. $-\infty$

- 13. What is the total number of horizontal and vertical asymptotes for the function $\frac{x^2 x}{4 x^2}$?
 - A. 3
 - B. 4
 - C. 2
 - D. 1
 - E. 0

- 14. Compute $\lim_{x\to 2} e^{\left(\frac{x^2+1}{2x+1}\right)}$
 - A. $e^{\frac{3}{5}}$
 - B. ∞
 - C. e
 - D. $e^{\frac{4}{5}}$
 - E. $\frac{4e}{5}$