1. If $\sec x=3$ and $\frac{3 \pi}{2}<x<2 \pi$, then $(\sin x+\cos x)=$
A. $\frac{1}{3}(1+\sqrt{8})$
B. $\frac{1}{3}(1-\sqrt{8})$
C. $\frac{1}{2}(1+\sqrt{8})$
D. $\frac{1}{3}(-1+\sqrt{8})$
E. $\frac{1}{2}(-1-\sqrt{8})$
2. Find the equation of the line which passes through the centers of these two circles:

$$
(x-3)^{2}+(y+1)^{2}=1 \quad \text { and } \quad x^{2}+y^{2}-4 y=1
$$

A. $y=x+2$
B. $y=-2-x$
C. $y=2-x$
D. $y=-3 x+2$
E. $y=-3 x$
3. If $f(x)=x^{2}+e^{(x+1)}$ and $g(x)=4 x-1$, then $(f \circ g)(2 t)=$
A. $(2 t)^{2}+e^{(2 t-1)}$
B. $(4 t+1)^{2}+e^{4 t}$
C. $(4 t+1)^{2}+e^{(4 t+1)}$
D. $(8 t-1)^{2}+e^{(8 t-2)}$
E. $(8 t-1)^{2}+e^{8 t}$
4. The equation of the function $g(x)$ obtained by shifting the graph of $f(x)=\log _{10} x$ three units vertically down and then reflecting it across the x-axis is given by
A. $g(x)=3-\log _{10} x$
B. $g(x)=-3-\log _{10} x$
C. $g(x)=-3+\log _{10} x$
D. $g(x)=-\log _{10}(x-3)$
E. $g(x)=-\log _{10}(x+3)$
5. Solve for x : $\quad e^{|2 x-1|}=2$.
A. $x=\frac{1}{2} \ln 2$ and $x=-\frac{1}{2} \ln 2$
B. $x=1+\ln 2$ and $x=\frac{1}{2}(1+\ln 2)$
C. $x=\frac{1}{2}(1+\ln 2)$ and $x=-\frac{1}{2}(1+\ln 2)$
D. $x=\frac{1}{2}(1-\ln 2)$ and $x=\frac{1}{2}(1+\ln 2)$
E. $x=\frac{1}{2} \ln 2$
6. The domain of $\ln \left(\frac{4 x^{2}}{x+1}\right)$ is
A. $(1, \infty) \cup(-\infty,-1)$
B. $(0, \infty) \cup(-\infty,-1)$
C. $(-1,0) \cup(0, \infty)$
D. $(-1,0]$
E. All real numbers except $x=0$ and $x=-1$
7. If $f(x)=\ln (3 x-1)$, find the domain of f^{-1}
A. $\left(\frac{1}{3}, \infty\right)$
B. $(0, \infty))$
C. $\left(-\frac{1}{3}, \infty\right)$
D. $(1, \infty)$
E. $(-\infty, \infty)$
8. Compute $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-x-2}{(x-2)^{2}}$
A. ∞
B. $-\infty$
C. 0
D. 1
E. -1
9. Compute $\lim _{t \rightarrow 0} \frac{\sqrt{2+t}-\sqrt{2-t}}{t}$
A. 2
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$
E. $\sqrt{2}$
10. Let $G(x)=\left\{\begin{array}{ll}1-x & \text { if } x<0 \\ x+x^{2} & \text { if } 0 \leq x<1 . \\ 2-x & \text { if } x \geq 1\end{array}\right.$ Then G is discontinuous
A. Only at 0
B. Only at 1
C. Only at 0 and 1
D. Only at $-1,0$, and 1
E. The function is continuous everywhere
11. Consider the statements
I. If $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$, then f is continuous.
II. If f is continuous at b, then $f(b)$ does not have to be defined.
III. The function $g(x)=\sqrt{1-x^{2}}$ is continuous only on $(-1,1)$.

Which are true?
A. I
B. I,II
C. II, III
D. II
E. None are true
12. Compute $\lim _{x \rightarrow \infty} \frac{2 x-5 x^{2}}{\sqrt{4 x^{2}+9}}$
A. $-\frac{5}{2}$
B. 1
C. $-\frac{5}{4}$
D. $\frac{1}{2}$
E. $-\infty$
13. What is the total number of horizontal and vertical asymptotes for the function $\frac{x^{2}-x}{4-x^{2}}$?
A. 3
B. 4
C. 2
D. 1
E. 0
14. Compute $\lim _{x \rightarrow 2} e^{\left(\frac{x^{2}+1}{2 x+1}\right)}$
A. $e^{\frac{3}{5}}$
B. ∞
C. e
D. $e^{\frac{4}{5}}$
E. $\frac{4 e}{5}$

