- 1) The interval which corresponds to the values of x satisfying |3x-2| < 5 is
 - A) (-1, 7/3]
 - B) [1, 3]
 - C) (-1, 7/3)
 - D) (1,3)
 - E) (1,3]
- 2) The center and the radius of the circle represented by the equation $3x^2 + 3y^2 3x + 2y = 1$ are respectively
 - A) (1/2, -1/3) and 5/6
 - B) (1/2, -1/3) and 7/6
 - C) (1,-2) and 4/9
 - D) (1/2, 1/3) and 5/6
 - E) (1/4, 1) and 5/6

- 3) If $\pi < \theta < 3\pi/2$ and $\cos \theta = -1/2$ then $\sin \theta$ is equal to
- A) $\sqrt{3}/4$
- B) $-\sqrt{3}/2$
- C) 1/2
- D) -1/2
- E) $\sqrt{3}/2$

- 4) The domain of the function $f(x) = \frac{\sqrt{9-x^2}}{\sqrt{2-x}}$ is
- A) (-3,2)
- B) [-3, 2]
- C) [-3,2)
- D) [-3, 3]
- E) (-3, 2]
- 5) Let $f(x) = x^2 + 1$, $g(x) = 2^x$ and $h(x) = x^3$. Then $f \circ g \circ h(x)$ is equal to
 - A) 2^{3x+1}
 - B) $(x^3 + 2^x)^2 + 1$
 - C) $2^{6x} + 1$
 - D) $(2^x)^2 + 1$
 - E) $4^{x^3} + 1$
- 6) The graph of f(x-2) + 5 can be obtained from the graph of f(x) by
 - A) Shifting the graph of f to the left by two units and upward by 5 units
 - B) Shifting the graph of f to along the diagonal by 5 units
 - C) Shifting the graph of f to the right by two units and downward by 5 units
 - D) Shifting the graph of f to the left by two units and downward by 5 units
 - E) Shifting the graph of f to the right by two units and upward by 5 units

- 7) The quantity $\log_2 3 + 2 \log_2 5 + \log_3 9$ is equal to
- A) $\log_2 700$
- B) $\log_2 900$
- C) $\log_2 450$
- D) $\log_2 300$
- E) $\log_2 500$
- 8) The inverse of the function $f(x) = \frac{5x-3}{3x+7}$ is $f^{-1}(x) =$
- $A) \frac{7x-3}{5-3x}$
- $B) \frac{7x+3}{5-3x}$
- $C) \frac{3x+5}{7-3x}$
- $D) \frac{3x-7}{5-3x}$
- $E) \frac{7x-5}{5-3x}$
- 9) Evaluate $\lim_{x\to -4} \frac{3x^2-48}{x^2+2x-8}$ if it exists. (If it does not exist, choose the answer DNE.)
- A) 4
- B) DNE
- C) -3
- D) -4
- E) 3

- 10) Evaluate $\lim_{t\to 3} \frac{\sqrt{t+1}-2}{t-3}$, if it exists. (If it does not exist, choose the answer DNE.)
 - A) ∞
 - B) DNE
 - C) $\frac{1}{4}$
 - D) $\frac{1}{5}$
 - E) 0
- 11) Let $a = \lim_{x \to \infty} (x^2 x)$ and $b = \lim_{x \to 0} (x^2 x \sin \frac{1}{x})$. Evaluate a and b. (If the limit does not exist, choose DNE.)

 A) $a = \infty$, b DNE
 - B) $a = \infty, b = 0$
 - C) $a = -\infty$, b DNE
 - D) a = 0, b = 0
 - E) a = 0, b DNE

12) The total number of asymptotes, vertical and horizontal, for the graph of

$$f(x) = \frac{\sqrt{9x^2 + 1}}{x}$$
 is:

- A) 3
- B) 4
- C) 1
- D) 0
- E) 2

13) For the function F(x) pictured, which of the following statements are true?

- $I. \lim_{x \to 0} F(x) = 2$
- II. $\lim_{x \to 2^{-}} F(x) = 0$
- III. F is continuous at x=0
- A) II and III only
- B) All are true
- C) II only
- D) I only
- E) I and II only

14) The quantity, $\lim_{x \to \frac{\pi}{3}} \frac{\cos x - \frac{1}{2}}{x - \frac{\pi}{3}}$, represents the derivative of some function f(x) at some number a. Select an appropriate f(x) and a.

A)
$$f(x) = \cos x, a = \pi$$

B)
$$f(x) = 3(\cos x - \frac{1}{2}), a = \pi$$

C)
$$f(x) = \cos x - \frac{1}{2}, a = \pi$$

D)
$$f(x) = \cos x - \frac{1}{2}, a = \frac{\pi}{3}$$

E)
$$f(x) = \cos x, a = \frac{\pi}{3}$$