MA 161 EXAM I

Name
ten–digit Student ID number
Division and Section Numbers
Recitation Instructor

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 15 problems, each worth $6\frac{2}{3}$ points. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

1. The graph of $x^2 - 6x + 8 - y = 0$ is obtained from the graph of $y = x^2$ by

A. Moving it 4 units to the right and 3 units down
B. Moving it 3 units to the left and 1 unit up
C. Moving it 3 units to the right and 1 unit down
D. Moving it 4 units to the left and 3 units down
E. Moving it 1 unit to the right and 3 units up

2. The solution to the inequality
$$x \le 5x - 3 < 8x - 2$$
 is
A. $x \ge -\frac{1}{3}$
B. $x \ge \frac{3}{4}$
C. $-\frac{1}{3} \le x < \frac{3}{4}$
D. $-\frac{1}{3} < x \le \frac{3}{4}$
E. $x > \frac{3}{4}$

3. Given that
$$\sin x = \frac{2}{5}$$
 and $\cos x < 0$, it follows that $\tan x$ is equal to
A. $-\frac{2}{\sqrt{21}}$
B. $-\frac{\sqrt{21}}{25}$
C. $-\frac{5}{\sqrt{21}}$
D. $-\frac{4}{25}$
E. $-\frac{4}{\sqrt{21}}$

- 4. The center C and radius r of the circle given by $x^2 + y^2 10x + 3y = 5$ are
- A. $C = \left(-\frac{3}{2}, 5\right), r = \frac{\sqrt{129}}{2}$ B. $C = \left(5, -\frac{3}{2}\right), r = \frac{\sqrt{129}}{2}$ C. C = (5, -3), r = 7D. C = (-5, 3), r = 7E. $C = \left(\frac{3}{2}, -5\right), r = \frac{\sqrt{129}}{2}$

- 5. An equation of the line through (-2, 2) and parallel to 4x + 3y 7 = 0 is
- A. 3y + 4x + 2 = 0B. 2x + 3y + 8 = 0C. 4x + 3y - 14 = 0D. 4y + 3x + 2 = 0E. 2x + 3y - 2 = 0

- 6. Given that $f(x) = \sqrt{4 x^2}$ and $g(x) = \sqrt{x^2 + 1}$, the domain of $g \circ f$ is
- A. $[-\sqrt{5}, -2] \cup [2, \sqrt{5}]$ B. $[-\sqrt{5}, \sqrt{5}]$ C. $(-\infty, -2] \cup [2, \infty)$ D. $(-\infty, -\sqrt{5}] \cup [\sqrt{5}, \infty)$ E. [-2, 2]

- 7. Which of the following statements are true?
 - I. $5^x \cdot 5^y = 5^{x+y}$
 - II. $(4 \cdot 3)^x = 4^x + 3^x$

III.
$$8^x + 8^y = 8^{x+y}$$

- A. Only I
- B. Only II
- C. Only I and II
- D. Only III
- E. I, II, and III

8. The inverse of the function
$$f(x) = \frac{3x-2}{2x+5}$$
 is $f^{-1}(x) =$
A. $\frac{5x-2}{3-2x}$
B. $\frac{2x-5}{3-2x}$
C. $\frac{2x+3}{5-2x}$
D. $\frac{5x+2}{3-2x}$
E. $\frac{3x-2}{3-5x}$

9.
$$\lim_{x \to 1} \frac{\sqrt{2x+5} - \sqrt{7}}{x-1} =$$

B. $\frac{2}{\sqrt{5}}$
C. $\frac{2}{\sqrt{7}}$
D. $\frac{1}{\sqrt{5} - \sqrt{7}}$
E. $\frac{1}{\sqrt{7}}$

10. If f and g are continuous at x = 2 with g(2) = 3and $\lim_{x \to 2} \frac{2f(x) - 3g(x)}{2g(x) - f(x)} = 7$, then f(2) is

- A. undefined B. $=\frac{17}{3}$ C. $=\frac{7}{3}$ D. =1
- E. impossible to determine

11.
$$\lim_{x \to -\infty} \sqrt{\frac{1 - 4x^2 + 7x^3}{28x^3 - \pi x + e}} =$$
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{4}$
D. $\frac{1}{e}$
E. $-\infty$

12. The total number of asymptotes, vertical and horizontal, for the graph of $f(x) = \frac{x-2}{\sqrt{2x^2+7x+3}}$ is B. 1

- C. 2
- D. 3
- E. 4

- 13. If a ball is thrown directly up from the ground with a velocity v_0 , then its height above ground at time t is given by $H(t) = v_0 t - \frac{g}{2} t^2$ until is falls back to the ground. Here g is the acceleration of gravity. Then, the velocity of the ball when it hits the ground is $B. \frac{v_0}{2g}$
 - C. 0 D. $-\frac{2g}{v_0}$

E. $-v_0$

- 14. $f'(a) = \lim_{h \to 0} \frac{32(2^h 1)}{h}$ represents the derivative of a certain function f at a number a in its domain. Determine f and a.
- A. f(x) = 32 and a = 0B. $f(x) = 32 \cdot 2^x$ and a = 2C. $f(x) = 2^x$ and a = 5D. $f(x) = 2^x$ and a = 32E. $f(x) = 32\frac{2^x - 1}{x}$ and a = 0
- 15. If r + 3s + 1 = 0 is the tangent line to r = g(s) at (-1, 2), then
- A. g(-1) = 2 and g'(-1) = 3B. g(2) = -1 and g'(2) = 3C. g(-1) = 2 and $g'(-1) = -\frac{1}{3}$ D. g(2) = -1 and g'(-1) = 3E. g(-1) = 2 and g'(-1) = -3