MA 161 EXAM I

Fall 2005

Name
ten–digit Student ID number
Division and Section Numbers
Recitation Instructor

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 16 problems, each worth 6 points.You get 2 points for coming and 2 if you fully comply with instruction 1. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

- 1. For which functions is it true that $\lim_{x \to 1} f(x) = 2$?
 - I. $f(x) = \frac{4x 4}{x^2 1} \qquad x \neq \pm 1.$ II. $f(x) = \begin{cases} x + 1 & x > 1, \\ x - 1 & x \leq 1. \end{cases}$ III. $f(x) = x^2 + 1.$ a. Just I and III b. Just II and III c. Just I and II d. Just III
 - e. All three

2 If
$$-x^2 + 1 - x \le g(x) \le x^2 - x + 1$$
 for all x, then $\lim_{x \to 0} g(x)$

- a. equals 0
- b. equals 1
- c. does not exist
- d. cannot be determined
- e. equals 2

3.
$$\lim_{x \to 1} \sqrt{\frac{x^2 + 2x - 3}{x - 1}}$$

a.
$$= 4$$

b.
$$= 1$$

c.
$$= 3$$

d.
$$= 2$$

e. does not exist

4.
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$$
$$a. = 2\sqrt{3}$$
$$b. = \frac{\sqrt{3}}{3}$$
$$c. = \frac{2\sqrt{3}}{3}$$
$$d. = \sqrt{3}$$

e. does not exist

5. Let
$$h(x) = \begin{cases} \frac{1}{x}, & 0 < x < 1, \\ x, & 1 < x. \end{cases}$$

Which of the following are true?

I.
$$\lim_{x \to 1^+} h(x)$$
 exists

II.
$$\lim_{x \to 1^-} h(x)$$
 exists

- III. $\lim_{x \to 1} h(x)$ exists
- IV. h is continuous at x = 1

a. only I

- b. only I and II
- c. only I, II, and III
- d. only IV
- e. all four

6. Determine the total number of vertical and horizontal asymptotes for

$$f(x) = x \frac{x^2 + 4x + 4}{x^2 + 3x + 2}$$

- a. none
- b. 1
- c. 2
- d. 3
- e. 4

7. Let $f(x) = x^2 + cx$.

Determine c so that f'(1) = 0.

- a. -1
- b. -2
- c. 0
- d. 1
- e. 2

The equation of the tangent line T to the graph of f(x) at x = 1 is

a. y = x - 2b. y = x + 2c. y = 2x + 2d. y = 2x + 4e. y = 2x

9. A function y = f(x) is both even and odd.

Then,

- a. Its graph is symmetric with respect to the line y = 1.
- b. It cannot be a linear function.
- c. It must be a logarithmic function.
- d. It must be constant.
- e. Its domain must be $\{0\}$.

10. Given the graphs of f and g below, we conclude that g(x) =

a.
$$g(x) = -f(3-x)$$

b. $-f(x-7)$
c. $f(3-x)$
d. $3-f(x)$
e. $f(-x) - 4$

- 11. Under certain conditions a population of certain bacteria doubles every 4 hours.If there are initially 100 bacteria, how many will there be after 6 hours?Assume exponential growth.
 - a. 200
 - b. $200\sqrt{2}$
 - c. 300
 - d. $300\sqrt{3}$
 - e. none of the above

12. The solution of $\ln(5-2x) = -3$ is

a.
$$\frac{e^{-3}-5}{2}$$

b. e^4
c. $e^{-3/2}-5$
d. $\frac{5-e^{-3}}{2}$
e. $5-e^{-3/2}$

13. $\cos(\csc^{-1} t)$, for $|t| \ge 1$, equals

a.
$$\sqrt{t^2 - 1}$$

b. $\frac{1}{\sqrt{t^2 - 1}}$
c. $\frac{t}{\sqrt{t^2 - 1}}$
d. $\frac{1}{t}$
e. $\frac{\sqrt{t^2 - 1}}{t}$

- 14. Given the 1–to–1 function $f(x) = -7 + 3x^3 + \tan \frac{\pi x}{2}$, |x| < 1, the value of $f(f^{-1}(2\pi))$ is
 - a. undefined
 - b. -7c. 2π
 - d. $-7 + (2\pi^2)$
 - e. 0

15. If
$$\sec \theta = \frac{5}{4}$$
, $\frac{3\pi}{2} < \theta < 2\pi$, then $\cot \theta =$
a. $\frac{4}{3}$
b. $-\frac{4}{3}$
c. $\frac{3}{4}$
d. $-\frac{3}{4}$
e. none of the above

16. Find the center and radius of the circle represented by the equation $16x^2 - 16x + 16y^2 + 24y = 19$.

a.
$$(1, -\frac{3}{2}), r = \sqrt{19}$$

b. $(\frac{1}{2}, -\frac{3}{4}), r = \sqrt{2}$
c. $(-1, \frac{3}{2}), r = \frac{\sqrt{19}}{4}$
d. $(-\frac{1}{2}, \frac{3}{4}), r = \sqrt{7}$
e. $(-8, 12), r = \sqrt{3}$