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If � = 1, (1) is a fractional Allen-Cahn problem
(González-Monneau);

If δ = 1, (1) is a homogenization problem (Monneau-P.);

We do not assume any assumption about how δ goes to 0 when
�→ 0.

Main problem 

We study the limit as � → 0 of the solution u� of the following 
fractional reaction-diffusion PDE: 

⎧
1 1 

� 
u� � 

δ∂t u� = −(−Δ) 2 u� − W 0 in R+ × R⎨ 
δ � (1)⎩u�(0, ·) = u0(·) on R 

where �, δ > 0 are small scale parameters and δ = δ� → 0 as � → 0, 
W is a multi-well potential with nondegenerate minima at integer 
points and u0 is non-decreasing. 
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Allen-Cahn equations 

Classical Allen-Cahn equation (Chen): for n ≥ 2, 

1 
∂t uδ = Δuδ − W 0(uδ) in R+ × Rn 

δ 

with a suitable initial condition, uδ(0, x) = u0(x), 0 < u0 < 1, 
where W is a double well potential with minima at 0 and 1. 

n=1, works by Fife and co. 

The stationary case previously studied by Modica and Mortola. 
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Fractional Allen-Cahn equations 

When Δ is replaced by −(−Δ)su, s ∈ (0, 1), the motion of 
forming interphases in dimension n ≥ 2 studied by Imbert, 
Souganidis; 

Stationary case, n ≥ 2: Savin, Valdinoci (non-local version of 
Modica-Mortola); 

In dimension 1, Gonzalez and Monneau studied 

δ 1 
δ∂t v = −(−Δ) 21 

vδ − W 0(vδ) in R+ × R 
δ 

with a well-prepared initial condition. Here W is a multi-well 
potential. 
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Dislocations 

Dislocations are defect lines in crystalline solids whose motion is 
directly responsible for the plastic deformation of these materials. 
Their typical length is of order of 10−6m with thickness of order of 
10−9m. 

Geometry of an edge dislocation 
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atomic scale (Frenkel-Kontorova model) 

microscopic scale (Peierls-Nabarro model) 

mesoscopic scale (Discrete dislocation dynamics) 

macroscopic scale (elasto-visco-plasticity with density of 
dislocations) 

Dislocations can be described at several scales by different models: 

1 

2 

3 

4 
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The Peierls-Nabarro model 
We consider a straight dislocation line parallel to e3. 

which are certain “line defects” in the crystal. To simplify the presentation, we will assume that the material
is invariant by integer translations in the direction e3. Because of this assumption, we can simply consider the
cross section of the crystal in the plane (e1, e2) where each atom is now assumed to have a position I ∈ Z2 in
the perfect crystal. We also assume that each atom I can have a displacement UI ∈ R in the direction e1, such
that the effective position of the atom I is I + UIe1.

On Figure 1 below is represented a view of the perfect crystal. On Figure 2 we can see a schematic view
of a edge dislocation in the crystal. On this picture, the upper part {I2 ≥ 0} of the crystal has been expanded
to the right of a vector 1

2e1, while the lower part {I2 ≤ −1} of the crystal has been contracted to the left of
a vector − 1

2e1. The net difference between these two vectors is e1 and is called the Burgers vector of this
dislocation.

e1

e2

I  =−1
2
2

I  = 0

Figure 1: Perfect crystal

I  =−1
2
2

I  = 0

e1

e2

Figure 2: Schematic view of a edge dislocation in
the crystal

In order to describe a edge dislocation in our formalism, let us make a few assumptions. We will assume that
the dislocation defects are essentially described by the mismatch between the two planes I2 = 0 and I2 = −1,
like on Figure 2. For this reason, and also in order to simplify the analysis, we assume that the displacement
of the crystal satisfies the following antisymmetry property

U(I1,−I2) = −U(I1,I2−1) for all I = (I1, I2) ∈ Z2. (2.1)

Let us also define the discrete gradient

(∇dU)I =

(
UI+e1 − UI

UI+e2 − UI

)
.

Remark that defects in the crystal can be seen as regions where the discrete gradient is not small.

Formalism for a edge dislocation with Burgers vector e1

In our formalism, a edge dislocation like the one of Figure 2, can be represented by a displacement UI satisfying
⎧
⎪⎨
⎪⎩

U(I1,0) = −U(I1,−1) → 0 as I1 → −∞

U(I1,0) = −U(I1,−1) → 1

2
as I1 → +∞.

Because we assume that the dislocation core lies in the two planes I2 = 0 and I2 = −1, it is reasonable to
assume that all the components of the discrete gradient are small, except components UI+e2 −UI for I = (I1, I2)
with I2 = −1. More precisely, we assume that there exists a small δ > 0 such that

{
|UI+e1 − UI | ≤ δ for all I = (I1, I2) ∈ Z2

|UI+e2 − UI | ≤ δ for all I = (I1, I2) ∈ Z2 with I2 ̸= −1.
(2.2)

2

Assumptions 

the dislocation defects are described by the mismatch between the two 
planes I2 = 0 and I2 = −1 
the displacement of the crystal is antysimmetric wrt the plane e1e3 

any atoms move only in the direction e1 

the displacement is independent of e3 
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The Peierls-Nabarro model 

The P-N model is a continuous model where a dislocation is 
described by means of a scalar phase feld defned over the slip 
plane. 

The medium will be R2, endowed with coordinates (x , y). 

The disregistry of the upper half crystal {y > 0} relative to the lower 
half {y < 0} is given by φ(x), which is a transition between 0 and 1: 

(
φ(−∞) = 0, φ(+∞) = 1 
φ0 > 0. 
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The Peierls-Nabarro model 

The total energy is given by 

1
Z Z

E = |rU(x , y)|2dxdy + W (U(x , 0))dx
2 R×R+ R | {z }| {z } 

misft energy elastic energy 

where U : R × R+ → R represents (twice) the (scalar) displacement 
and it is such that 

U(x , 0) = φ(x). 

The potential W satisfes 

W (u + 1) = W (u) ∀u ∈ R (periodicity) 

W (Z) = 0 < W (u) ∀u ∈ R \ Z (minimum property) 
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The system can be rewritten for

φ(x) = U(x ,0)

as follows
−(−Δ) 1

2 φ = W 0(φ) in R

where
(−Δ) 1

2 v = F−1(|ξ|F(v)) for any v ∈ S(Rn)

and F is the Fourier transform. If v ∈ C1,1
loc (R) ∩ L∞(R), n = 1,

−(−Δ) 1
2 v = PV

1
π

Z

R

v(y)− v(x)
(y − x)2 dy

The Peierls-Nabarro model 

A critical point of the energy satisfes 
(
ΔU(x , y) = 0 (x , y) ∈ R × R+ 

∂y U(x , 0) = W 0(U(x , 0)) x ∈ R 
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The Peierls-Nabarro model 

A critical point of the energy satisfes 
(
ΔU(x , y) = 0 (x , y) ∈ R × R+ 

∂y U(x , 0) = W 0(U(x , 0)) x ∈ R 

The system can be rewritten for 

φ(x) = U(x , 0) 

as follows 
−(−Δ) 21 

φ = W 0(φ) in R 

where 
(−Δ) 1 

= F−1(|ξ|F(v)) for any v ∈ S(Rn)2 v 

and F is the Fourier transform. If v ∈ C1,1 
loc (R) ∩ L∞(R), n = 1, 

1
Z 

v(y) − v(x)−(−Δ) 21 
v = PV dy

π (y − x)2R 
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In the original PN model:

W (u) =
1

4π2 (1− cos(2πu))

and
φ(x) =

1
2
+

1
π

arctan(2x)

The Peierls-Nabarro model 

The phase transition φ (also called layer solution) therefore satisfes 

⎪ 1
⎧
−(−Δ) 2 φ = W 0(φ) in R⎨
φ0 > 0 ⎪⎩
φ(−∞) = 0, φ(+∞) = 1, φ(0) = 2

1 
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The Peierls-Nabarro model 
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2 

In the original PN model: 

1
W (u) = (1− cos(2πu))

4π2 

and 
1 1 

φ(x) = + arctan(2x)
2 π 
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The Peierls-Nabarro model 

⎪ 1
⎧
−(−Δ) 2 φ = W 0(φ) in R⎨
φ0 > 0 ⎪
φ(−∞) = 0, φ(+∞) = 1, φ(0) = 1⎩ 

2 

Existence, uniqueness by Cabré, Sòla-Morales. Asymptotic 
estimates by González, Monneau; 

When −(−Δ) 21 
is replaced by −(−Δ)s , s ∈ (0, 1), existence, 

uniqueness and asymptotic estimates are proven in as series of 
paper by Cabré, Sire, Dipierro, Figalli, Palatucci, Savin, 
Valdinoci. 
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Evolutive PN-model 
Suppose that there are N straight edge dislocations lines all lying in 
the same plane: 

After a cross section: 
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with the following initial condition

u(0, x) =
NX

i=1

φ

�
x − y0

i
δ

�
,

where φ is the transition layer introduced before and
0 ≤ y0

i+1 − y0
i ' 1.

Evolutive PN-model 

The dynamics for an ensemble of N straight dislocations lines with 
the same Burgers’ vector and all contained in a single slip plane, 
moving with self-interactions (no exterior forces) is described by the 
evolutive version of the Peierls-Nabarro model: 

∂t u = −(−Δ) 21 
u − W 0(u) in R+ × R. 
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Evolutive PN-model 

The dynamics for an ensemble of N straight dislocations lines with 
the same Burgers’ vector and all contained in a single slip plane, 
moving with self-interactions (no exterior forces) is described by the 
evolutive version of the Peierls-Nabarro model: 

∂t u = −(−Δ) 21 
u − W 0(u) in R+ × R. 

with the following initial condition 

N � 
y0 �

iu(0, x) = 
X 

φ x − ,
δ 

i=1 

where φ is the transition layer introduced before and 
0 ≤ yi

0 
+1 − y0 ' 1.i 

Stefania Patrizi 



Fractional Allen-Cahn equation 

Consider the following rescaling 
� 

t x 
� 

vδ (t , x) = u 
δ2 , δ 

Then, vδ is solution of the fraction fractional Allen-Cahn type 
equation: 

δ 1 
δ∂t v = −(−Δ) 21 

v − W 0(v) in R+ × R 
δ 

associated to the well-prepared initial condition: 

N � 
x − y0 �

ivδ (0, x) = 
X 

φ . 
δ 

i=1 
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Fractional Allen-Cahn equation 

González and Monneau proved that the solution vδ converges, as 
δ → 0 to the stable minima of W , i.e. integers. More precisely, 

N

vδ(t , x) → 
X 

H(x − yi (t)), 
i=1 

where H is the Heaviside function and the interface points yi (t), 
i = 1, . . . , N evolve in time driven by the following system of ODE’s: 

⎧
c0 1 

ẏi = 
X 

in (0, +∞)⎪⎨ 
π 

j 6 yi − yj (2)=i ⎪
yi (0) = y0⎩ 

i , 

where c0 = 
�R

R(φ
0)2

�−1. System (2) corresponds to the classical 
discrete dislocation dynamics (DDD). 
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Fractional Allen-Cahn equation 
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In our paper we consider the case N → +∞. Precisely, 

1
N = N� ' . 

� 

that is 
∂t u 

1 
= −(−Δ) 2 u − W 0(u) in R × R+ , 

u(0, x) = 
N� �X 

φ x − 
i=1 

y0 �
i ,
δ 

We want to identify at large (macroscopic) scale the evolution model 
for the dynamics of a density of dislocations. 
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We consider the following rescaling 
� 

t x 
� 

u�(t , x) = �u ,
�δ2 , �δ 

then we see that u� is solution of 
1 

�
u� �

�δ∂t u = −(−Δ) 21 
u� − W 0 in (0, +∞) × R 

δ � 

with initial datum 
N� � 

x − �yi 
� 

u�(0, x) = 
X 

�φ . 
�δ 

i=1 
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More in general, we consider 
⎧

1 1 
� 

u� � 

δ∂t u� = −(−Δ) 2 u� − W 0 in R+ × R⎨ 
δ � ⎩u�(0, ·) = u0(·) on R 

where �, δ > 0 are small scale parameters and δ = δ� → 0 as � → 0, 
⎧

W ∈ C2,β (R) for some 0 < β < 1 
W (u + 1) = W (u) for any u ∈ R 

⎪⎪⎪⎪⎪⎪⎨
W = 0 on Z 

W > 0 on R \ Z 

W 00(0) > 0. 

⎪⎪⎪⎪⎪⎪⎩ 

On the function u0 we assume 
(

u0 ∈ C1,1(R) 
u0 non-decreasing. 
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Main result 

⎧
1 1 

� 
u� � 

δ∂t u� = −(−Δ) 2 u� − W 0 in R+ × R⎨ 
δ � (3)⎩u�(0, ·) = u0(·) on R 

Theorem 

Let u� be the viscosity solution of (3). Then, as � → 0, u� converges 
locally uniformly in (0, +∞) × R to the non-decreasing viscosity 
solution of (

∂t u = −c0∂x u(−Δ) 
1 
2 u in R+ × R 

u(0, ·) = u0 on R 
(4) 

where c0 = 
�R

R(φ
0)2

�−1 . 
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Mechanical interpretation of the convergence result 

The limit equation 

1
(
∂t u = −c0∂xu(−Δ) 2 u in R+ × R 

u(0, ·) = u0 on R 

represents the plastic fow rule for the macroscopic crystal plasticity 
with density of dislocations. 

u is the plastic strain 

∂t u is the plastic strain velocity; 

∂xu is the dislocation density; 

−(−Δ) 21 
u is the internal stress created by the density of 

dislocations contained in a slip plane. 

The theorem says that in this regime, the plastic strain velocity ∂t u is 
proportional to the dislocation density ux times the effective stress 
−(−Δ) 21 

u. This physical law is known as Orowan’s equation. 
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Let f = ux , differentiating (5), we get

∂t f = c0∂x(fH[f ])
where H is Hilbert transform defned in Fourier variables by

F(H[v ]) (ξ) = i sgn(ξ) F(v)(ξ),
for v ∈ S(R). The Hilbert transform has the representation formula

H[v ](x) = 1
π

PV
Z

R

v(y)
y − x

dy

and if u ∈ C1,α(R) and ux ∈ Lp(R) with 1 < p < +∞, then

− (−Δ) 1
2 u = H[ux ]. (6)

Equation 
∂t u = −c0∂xu(−Δ) 21 

u (5) 
is an integrated form of a model studied by Head for the 
self-dynamics of a dislocation density represented by ux 

A. K. HEAD, Dislocation group dynamics III. Similarity solutions 
of the continuum approximation, Phil. Magazine, 26, (1972), 
65-72. 
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∂t f = c0∂x (f H[f ]) 
where H is Hilbert transform defned in Fourier variables by 

F(H[v ]) (ξ) = i sgn(ξ) F(v)(ξ), 
for v ∈ S(R). The Hilbert transform has the representation formula 

1 
Z 

v(y)H[v ](x) = PV dy
π y − xR 

and if u ∈ C1,α(R) and ux ∈ Lp(R) with 1 < p < +∞, then 

− (−Δ) 21 
u = H[ux ]. (6) 
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Existence of a smooth solution of (7) is proven by Castro and
Còrdoba under the assumption that the initial datum is strictly
positive and in Cα(R) ∩ L2(R)

Carrillo, Ferreira and Precioso apply transportation methods and
show that the solution can be obtained as a gradient fow in the
space of probability measures with bounded second moment.

The equation of motion of the dislocation continuum 

Equation 
∂t f = c0∂x (f H[f ]) (7) 

is called by Head the equation of motion of the dislocation continuum 
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More literature 

δ = 1, homogenization problem studied by R. Monneau and S.P 
in any dimension. 
Limit equation ∂t u = H(ru, −(−Δ) 21 

u), where the effective 
Hamiltonian H is defned through a cell problem. 

When n = 1, H(p, L) ' co|p|L. 

δ = 0, corresponds to the (DDD). The passage from the discrete 
model (DDD) to continuum models has been studied by 
Forcadel, Imbert and Monneau and more recently by van Meurs, 
Peletier, Pozar. 
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Heuristics. Approximation of −(−Δ) 1 
2 

Let v ∈ C1,1(R). Assume for simplicity that v is strictly increasing. Let 
� > 0 be a small parameter. Let us defne the points xi as follows, 

v(xi ) = �i , i = M�, . . . , N� 

where M� := 
l 

infR v+� 
m 

and N� = 
j 

supR v−� 
k 
. By the monotonicity of v� � 

the points xi are ordered, 

xi < xi+1 for all i . 

Then, we show that 

1 1 � −(−Δ) 2 v(xi ) ' − 
X 

,
π 

j=6 i 
xi − xj 

where the error goes to 0 when � → 0. 
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Then, we have
1
π

X
|xi−xi0

|>r

�

xi − xi0
=

1
π

X
|xi−xi0

|>r

v(xi+1)− v(xi )

xi − xi0

'
1
π

X
|xi−xi0

|>r

vx (xi )(xi+1 − xi )

xi − xi0

'
1
π

Z
|x−xi0

|>r

vx (x)
x − xi0

dx

=
1
π

Z
|x−xi0

|>r

v(x)− v(xi0 )

(x − xi0 )
2

dx −
1
π

v(xi0 + r) + v(xi0 − r)− 2v(xi0 )

r

' −(−Δ)
1
2 [v ](xi0 ).

We can control the error produced in the approximation by choosing
r not too small (r such that �/r → 0 as �→ 0).

Heuristics. Approximation of −(−Δ) 1 
2 

To show it, we consider a small radius r = r� → 0 as � → 0 and we 
split X X X� � � 

= + . 
xi − xi0 xi − xi0 xi − xi0i 6 i 6 |xi −xi0

|>r =i0 =i0 
|xi −xi0

|≤r 
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Heuristics. Approximation of −(−Δ) 1 
2 

To show it, we consider a small radius r = r� → 0 as � → 0 and we 
split X � X � X 

. 
� 

= + 
i 6 xi − xi0 i 6

xi − xi0 xi − xi0=i0 =i0 |xi −xi0
|>r 

|xi −xi0
|≤r 

Then, we have X X1 1� v(xi+1) − v(xi ) 
= 

π xi − xi0 π xi − xi0|xi −xi0
|>r |xi −xi0

|>r X1 vx (xi )(xi+1 − xi )' 
π xi − xi0|xi −xi0

|>r Z
1 vx (x) dx' 
π 

1 

|x−xi0
|>r x − xi0 Z v(x) − v(xi0 ) 1 v(xi0 + r ) + v(xi0 − r ) − 2v(xi0 )dx −= 

|x−xi0
|>r 

1 

(x − xi0 )
2π π r 

' −(−Δ) 2 [v ](xi0 ). 

We can control the error produced in the approximation by choosing 
r not too small (r such that �/r → 0 as � → 0). 
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Heuristics. Approximation of −(−Δ) 1 
2 

On the other hand, for i 6= i0, 

�(i − i0) = v(xi ) − v(xi0 ) ' vx (xi0 )(xi − xi0 ) 

from which X X 1� 
' vx (xi0 ) (i − i0)xi − xi0i 6=i0 i 6=i0 

) r 
�

|i−i0|≤vx (xi0X ⎛⎝ 
|xi −xi0

|≤r ⎞⎠ X1 1 
' vx (xi0 ) + 

(i − i0) (i − i0)i≤i0−1 i≥i0+1 ⎛⎝ ⎞⎠ X 1 X 1 
= vx (xi0 ) − + 

k k 
k≥1 k≥1 

= 0. 

We can control the error produced by choosing r suffciently small 
(r ≤ � 2

1
). 
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Heuristics. Any function is well-prepared 
Let φ be the transition layer. If H(x) is the Heaviside function, then 

1 
φ(x) ' H(x) − , if |x | >> 1,

απx 

where α = W 00(0). Then, if v ∈ C1,1(R) is non-decreasing � �N�X x − xi v(x) ' �φ + �M�,
�δ

i=M� 

where �M� ' infR v . Indeed, assume x = xi0 for some i0. Then, 
N� � � i0−1 � � N� � �X X Xxi0 − xi xi0 − xi xi0 − xi 

�φ + �M� = �φ + �φ(0) + �φ + �M� 
�δ �δ �δ

i=M� i=M� i=i0+1 !i0−1 N�X X�δ �δ � 
' � 1+ + + �M� 

απ(xi − xi0 ) απ xi − xi0i=M� i=i0+1 X�δ � 
= + �i0

απ 
i 6 xi − xi0=i0 � ��δ 1 

' −(−Δ) 2 [v ](xi0 ) + �i0
α 

' �i0 

= v(xi0 ). 
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Then, we can defne xi(t) as the unique solution of

u(t , xi(t)) = �i.

Differentiate,
∂t u(t , xi(t)) + ∂x u(t , xi(t))ẋi(t) = 0,

from which
ẋi(t) = −

∂t u(t , xi(t))
∂x u(t , xi(t))

.

Next we consider as ansatz for u� the approximation of u given by

Φ�(t , x) :=
N�X

i=M�

�φ

�
x − xi(t)

�δ

�
+ �M�.

Plugging the anzatz into the PDE δ∂t u� = −(−Δ)
1
2 u� − 1

δ
W 0

�
u�

�

�
,

ẋi '
c0

π

X
j 6=i

�

xi − xj
' −c0(−Δ)u(t , ·)(xi)

Heuristics. Proof of convergence 

Assume that the limit function u is smooth and ∂x u > 0. 
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Differentiate,
∂t u(t , xi(t)) + ∂x u(t , xi(t))ẋi(t) = 0,
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Heur istics. Proof of convergence 

Assume that the limit function u is smooth and ∂xu > 0. 
Then, we can defne xi (t) as the unique solution of 

u(t, xi (t)) = �i. 

Differentiate, 
∂tu(t, xi (t)) + ∂xu(t, xi (t))ẋi (t)= 0, 

from which 
∂tu(t, xi (t))

ẋi (t)= − . 
∂xu(t, xi (t)) 

Nextwe consider as ansatzfor u
� 

the approximation of u givenby 
�� N� X x − xi (t)

Φ
�
(t, x) := �φ + �M�. 
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��� 
� 1 u

Plugging the anzatz into the PDE δ∂tu = −(−Δ) 2
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u
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− W 

0 
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ẋi ' '− c0(−Δ)u(t, ·)(xi )
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Notice that if we defne
yi(τ) :=

xi(�τ)

�

then the yi ’s solve

ẏi(τ) = ẋi(�τ) '
c0

π

X
j 6=i

�

xi − xj
=

c0

π

X
j 6=i

1
yi − yj

,

which is the (DDD).

Heuristics. Proof of convergence 

Therefore, 
1 

∂t u(t , xi (t)) = −c0∂x u(t , xi (t))(−Δ) 2 u(t , xi (t)). 

Passing to the limit as � → 0 we see that u solves 

1 
∂t u = −c0∂x u(−Δ) 2 u. 
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Proof of convergence 

In the formal proof we prove that: 

The limit function is u is viscosity solution of the limit equation when 
testing with test functions with derivative in x different than 0; 

For all t ≥ 0, limx→−∞ u(t , x) = infR u0 and limx→+∞ u(t , x) = supR u0, 
that is the mass of the non-negative function ∂x u(t , x) is conserved: for 
all t ≥ 0, 

k∂x u(t , ·)kL1(R) = k∂x u0kL1(R). 

By a comparison argument, we conclude that u is the non-decreasing 
viscosity solution of the limit equation. 
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