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Outline 

Nonlocal minimal surfaces 

Energy functional dealing with “pointwise interactions” 
between a given set and its complement 

Main idea: the “surface tension” is the byproduct of long-range 
interactions 

Implications: nonlocal phase transitions and nonlocal 
capillarity theories 

New effects due to the long-range interactions 

Contributions from “far-away” can have a signifcant infuence 
on the local structures of these new objects 

STICKINESS Differently from classical minimal surfaces, the 
nonlocal minimal surfaces have the strong tendency to “stick 
at the boundary” 
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The fractional perimeter functional 

Given s ∈ (0, 1) and a bounded open set Ω ⊂ Rn with 
C1,γ -boundary, the s-perimeter of a (measurable) set E ⊆ Rn in 
Ω is defned as 

Pers(E; Ω) := L(E ∩ Ω, (CE) ∩ Ω) 

+ L(E ∩ Ω, (CE) ∩ (CΩ)) + L(E ∩ (CΩ), (CE) ∩ Ω), 

where CE = Rn \ E denotes the complement of E, and L(A, B) 
denotes the following nonlocal interaction term Z Z 

1
L(A, B) := dx dy ∀ A, B ⊆ Rn ,

|x − y|n+s
A B 

This notion of s-perimeter and the corresponding minimization 
problem were introduced in [Caffarelli-Roquejoffre-Savin, 
2010]. 
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[Caffarelli-Roquejoffre-Savin, 2010] 

1) Existence theorem: 
there exists E s-minimizer for Pers in Ω with 
E \ Ω = E0 \ Ω. 

2) Maximum principle: 
E s-minimizer and (∂E) \ Ω ⊂ {|xn| 6 a} ⇒ 
∂E ⊂ {|xn| 6 a}. 

3) If ∂E is an hyperplane, then E is s-minimizer. 

4) If E is s-minimizer in B1, then ∂E is C1,α in B1/2 except in 
a closed set Σ, with Hausdorff dimension less or equal 
than n − 2. 

5) If E is s-minimizer and 0 ∈ ∂E, then Z 
χE(y) − χEc (y)

dy = 0. 
|y|n+s

Rn 
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[Savin-Valdinoci, 2013]: 
Regularity of cones in dimension 2. 

If E is s-minimizer in B1, then ∂E is C1,α in B1/2 except in a 
closed set Σ, with Hausdorff dimension less or equal than n − 3. 
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Limit as s → 1 

[Bourgain-Brezis-Mironescu, 2001], [Dávila, 2002], [Ponce, 
2004], [Caffarelli-Valdinoci, 2011], [Ambrosio-De 
Philippis-Martinazzi, 2011], [Lombardini, 2018]: 

(1− s)Pers → Per, as s % 1 

(up to normalizing multiplicative constants). 

⇓ 

[Caffarelli-Valdinoci, 2013]: 
s close to 1: nonlocal minimal surfaces are as regular as 
classical minimal surfaces. 

(If E is s-minimizer in B1, then ∂E is C1,α in B1/2 except in a 
closed set Σ, with Hausdorff dimension less or equal than 
n − 8.) 
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Limit as s → 0 

[Maz’ya-Shaposhnikova, 2002] and 
[Dipierro-Figalli-Palatucci-Valdinoci, 2013]: 
If there exists the limit Z 

1 
α(E) := lim s dy, 

s&0 |y|n+s
E∩(CB1) 

then � � |E ∩ Ω| |Ω \ E|
lim s Pers(E, Ω) = ωn−1 − α(E) + α(E) . 
s&0 ωn−1 ωn−1 
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Boundary 
behaviour of 

nonlocal minimal 
surfaces 

Stickiness to half-balls 

For any δ > 0, S. Dipierro � � 
Introduction Kδ := B1+δ \ B1 ∩ {xn < 0}. 
Limits 

We defne Eδ to be the set minimizing the s-perimeter among Stickiness 
phenomenonall the sets E such that E \ B1 = Kδ. 

K
δ
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There exists δo > 0 such that for any δ ∈ (0, δo] we have that 

Eδ = Kδ. 
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Stickiness to the sides of a box 

Given a large M > 1 we consider the s-minimal set EM 

in (−1, 1) × R with datum outside (−1, 1) × R given by the 
jump JM := J− 

M , where M ∪ J+ 

J− 
M := (−∞, −1] × (−∞, −M) 

J+and M := [1, +∞) × (−∞, M). 
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Stickiness to the sides of a box 

There exist Mo > 0 and Co ≥ C0 > 0, depending on s, such o 

that if M ≥ Mo then 

1+s 

[−1, 1) × [CoM 2+s , M] ⊆ Ec 
M 

1+s 

and (−1, 1] × [−M, −CoM 2+s ] ⊆ EM. 

1+sAlso, the exponent β := 2+s above is optimal. 
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Stickiness as s → 0+ 

We consider a sector in R2 outside B1, i.e. 

Σ := {(x, y) ∈ R2 \ B1 s.t. x > 0 and y > 0}. 

Let Es be the s-minimizer of the s-perimeter among all the 
sets E such that E \ B1 = Σ. 
Then, there exists so > 0 such that for any s ∈ (0, so] we have 
that Es = Σ. 
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Instability of the fat fractional minimal surfaces 

Fix �0 > 0 arbitrarily small. Then, there exists δ0 > 0, possibly 
depending on �0, such that for any δ ∈ (0, δ0] the following 
statement holds true. 
Assume that F ⊃ H ∪ F− ∪ F+, where 

H := R × (−∞, 0), 

F− := (−3, −2) × [0, δ) 

and 
F+ := (2, 3) × [0, δ). 

Let E be the s-minimal set in (−1, 1) × R among all the sets 
that coincide with F outside (−1, 1) × R. 
Then 

2+�0
E ⊇ (−1, 1) × (−∞, δ 1−s ]. 
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Three further questions 
[Dipierro-Savin-Valdinoci, 2020] 

1. How regular are the nonlocal minimal surfaces coming from 
inside the domain? 

2. Is the Euler-Lagrange equation satisfed up to the boundary? 

3. How typical is the stickiness phenomenon? 
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Regularity coming from inside 

“Continuity implies differentiability” 

Consider a nonlocal minimal graph in (0, 1), with a smooth 
external graph u0. 

There is a dichotomy: 

I either 
lim u0(x) 6 u(x)= lim 
x%0 x&0 

and 
lim |u0(x)| = +∞, 
x&0

I or 
lim u0(x) = lim u(x) 
x%0 x&0 

1+s
and u is C1, 2 at 0. 
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Boundary 
behaviour of Some remarks 

nonlocal minimal 
surfaces 

S. Dipierro 
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This dichotomy is a purely nonlinear effect, since the boundary 
behavior of linear equation is of Hölder type [Serra-Ros Oton]. 
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Some remarks 

Stickiness + dichotomy = butterfy effect 

An arbitrarily small perturbation of the fat data produce a 
boundary discontinuity, which entails an infnite derivative at 
the boundary. 

An arbitrarily small perturbation of the fat data produce an 
infnite derivative at the boundary. 
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Some remarks 

As a curve, the nonlocal minimal graph turns out to be always 
1+s

C1, 2 : 
1+s

it is either the graph of a C1, 2 -function (when it is continuous 
at the boundary!), or it is discontinuous and sticks vertically 

1+s
detaching in a C1, 2 fashion [Caffarelli-De Silva-Savin] (then 

1+s
the inverse function is a C1, 2 function). 
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F . 
|y| |y|1+s 

−∞ 

And this is a “C1,s operator”. 

But 1+s > s, therefore we can “pass the equation to the limit”... 2 
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Boundary Euler-Lagrange equations 

If u is a nonlocal minimal graph in (0, 1) with smooth datum 
outside, then 
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Stickiness is generic 

Let ϕ ∈ C0 
∞([−2, −1], [0, 1]), with ϕ 6≡ 0. 

Let u(t) be the nonlocal minimal graph in (0, 1) with external 
datum 

(t)u := u0 + tϕ.0 

Suppose that 
lim u0(x) = lim u(x). 
x%0 x&0 

Then 
lim u0 

(t)
(x) < lim u(t)(x). 

x%0 x&0 
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With the Euler-Lagrange equation up to the boundary, we can 
take any confguration, add an arbitrarily small bump and use 
the unperturbed confguration as a barrier. 

At touching points the additional bump produces an extra-mass 
violating the Euler-Lagrange equation. 

Notice that now also touching at the boundary can be taken into 
account! 
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Proof of dichotomy 

Think about the usual suspects (discontinuous, Lipschitz, 
Hölder, smooth). 

Blow-up. 

The “worst” cases to understand are the Hölder and the smooth 
(the Lipschitz produces non-minimal corners). 

The smooth case produces fat objects: use a boundary 
improvement of fatness (combined with a boundary 
monotonicity formula) to deduce smoothness of the initial 
minimizer (for this, use new barrier to go beyond the linear 
theory!). 

The Hölder case produces vertical angles: rule them out by 
proving that close-to-vertical nonlocal minimal graphs are 
indeed vertical (for this, slide balls). 
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(Dis)connectedness of nonlocal minimal surfaces 
[Dipierro-Onoue-Valdinoci, 2020] 

We consider nonlocal minimal surfaces in a cylinder with 
prescribed datum given by the complement of a slab. 

0Ω := {(x , xn) with |x0| < 1}. 

0E0 := {(x , xn) with |x0| > M}. 
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(Dis)connectedness of nonlocal minimal surfaces 
[Dipierro-Onoue-Valdinoci, 2020] 

As in the classical case, when the width of the slab is large the 
minimizers are disconnected and when the width of the slab is 
small the minimizers are connected. 

Differently from the classical case, when the width of the slab 
is large the minimizers are not fat discs, and when the width of 
the slab is small then the minimizers completely adhere to the 
side of the cylinder. 

Boundary 
behaviour of 

nonlocal minimal 
surfaces 

S. Dipierro 

Introduction 

Limits 

Stickiness 
phenomenon 

79 / 137 



(Dis)connectedness of nonlocal minimal surfaces 
[Dipierro-Onoue-Valdinoci, 2020] 

As in the classical case, when the width of the slab is large the 
minimizers are disconnected and when the width of the slab is 
small the minimizers are connected. 

Differently from the classical case, when the width of the slab 
is large the minimizers are not fat discs, and when the width of 
the slab is small then the minimizers completely adhere to the 
side of the cylinder. 

Boundary 
behaviour of 

nonlocal minimal 
surfaces 

S. Dipierro 

Introduction 

Limits 

Stickiness 
phenomenon 

80 / 137 



(Dis)connectedness of nonlocal minimal surfaces 
[Dipierro-Onoue-Valdinoci, 2020] 

There exists m0 ∈ (0, 1) such that if M ∈ (0, m0), then the 
minimizer in Ω coincides with Ω. In particular, it is connected 
(but it does not look like a catenoid!). 
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(Dis)connectedness of nonlocal minimal surfaces 
[Dipierro-Onoue-Valdinoci, 2020] 

There exists M0 > 1 such that if M > M0, then the minimizer 
in Ω is disconnected. 

Differently from the classical case, the minimizer contains 

BcM−s (0, ..., 0, −M) ∪ BcM−s (0, ..., 0, M), 

so it is not the complement of a slab. Also (at least in 
dimension 2) it sticks at the boundary. 
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Yin-Yang Theorems 
[Bucur-Dipierro-Lombardini-Valdinoci, 2020] 

There exists ϑ > 1 such that if E is s-minimal in Ω ⊂ Rn 

and E ∩ (Ωϑdiam(Ω) \ Ω) = ∅, then 

E ∩ Ω = ∅. 
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Stickiness in dimension 3 
[Dipierro-Savin-Valdinoci, 2020] 

While stickiness in dimension 2 corresponds to a boundary 
discontinuity, in dimension 3 or higher even more complicated 
phenomena can arise. 
Namely, not only one has to detect possible boundary 
discontinuities, but also to understand the geometry of the 
“trace”. 
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Stickiness in dimension 3 
[Dipierro-Savin-Valdinoci, 2020] 

Let u be s-minimal in (−1, 1) × (0, 1) × R with u = 0� 
− 1 � 

in (−2, 2) × .100 , 0 

Consider the trace of u 

f (x) := lim u(x, y). 
y&0 

Assume that f (0) = 0. Then, near the origin, 

3+s2|u(x, y)| ≤ C (x + y2) 4 . 

In particular, f 0(0) = 0. 
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Stickiness in dimension 3 
[Dipierro-Savin-Valdinoci, 2020] 

On the one hand, boundary points which attain the fat exterior 
datum in a continuous way have necessarily horizontal 
tangency. 

On the other hand, boundary points with a jump have 
necessarily a vertical tangency. 

Consequently, points with vertical tangency accumulate to zero 
crossing points possessing horizontal tangency, preventing a 
differentiable boundary regularity in a neighborhood of 
horizontal points! 
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Stickiness in dimension 3 
[Dipierro-Savin-Valdinoci, 2020] 

Pivotal step: if a homogeneous nonlocal minimal graph 
in {x > 0} vanishes in {x < 0} and is continuous at the origin, 
then it necessarily vanishes at all points: 

Let u : R2 → R be an s-minimal graph in {x > 0}, with u = 0 
in {x < 0}. 

Assume also that u is positively homogeneous of degree 1, i.e. 
u(tX) = tu(X) for all X ∈ R2 and t > 0. Suppose that 

lim u(x, y) = 0. 
x&0 

Then u ≡ 0. 
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Open problems [Dipierro-Savin-Valdinoci, 2020] 

What happens in dimension n ≥ 4? 

(Dimension 3 was “easier” because the trace is a function 
from R to R, so knowing the derivative at a point, together with 
the 1-homogeneity, determines already half of the trace; in 
dimension 4 this only determines the trace along a half-line). 
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Is it possible to construct examples of nonlocal minimal graphs 
which are locally fat from outside and whose trace develops 
vertical tangencies? 
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Open problems [Dipierro-Savin-Valdinoci, 2020] 

What is the behavior of a nonlocal minimal graph and of its 
trace at the corners of the domain and in their vicinity? 

Can one understand (dis)continuity and tangency properties, 
possibly also in relation with the convexity or concavity of the 
corner? 
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How “nonlinear” is the problem? 

The linearization of the trace of a nonlocal minimal graph is 
given by the fractional normal derivative of a fractional Laplace 
problem. 

Indeed, if u is a nonlocal minimal graph, say in x ∈ (0, 1), and 
uit is ε-fat near the origin, then (the “vertical rescaling”) tends ε 

1+s
to a function u which is a solution of (−Δ) 2 u(x) = 0 
for x ∈ (0, 1). 

By the boundary regularity of linear equation (Serra, Ros-Oton, 
Grubb, etc.) the frst order of u is of Hölder type: near the 

1+s
origin u ' ax 2 , for some a ∈ R. 

1+s
So, one may expect that, near the origin, u(x) ' aεx 2 . 

3+s
But since |u(x, 0)| ≤ C x 2 , one is tempted to guess that 
necessarily a = 0. 
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Flexibility of linear equations 
[Dipierro-Savin-Valdinoci, 2020] 

But this is not the case! The fractional normal derivative of a 
fractional Laplace problem is not only different than zero in 
general, but it can be arbitrarily prescribed: 

Let n ≥ 2 and f ∈ C(Rn−1). Then, for every δ > 0 there 
exist fδ, uδ ∈ C(Rn−1) such that 

sup|x0|≤1 |fδ(x0) − f (x0)| ≤ δ, 

(−Δ)σuδ = 0 in B1 ∩ {xn > 0}, 
uδ = 0 in {xn < 0}, 

uδ (x)limxn&0 = fδ(x0) for all |x0| < 1.xσ 
n 

⎧⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩ 
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...so, in some cases, linear and nonlinear equations are very 
different... 
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and nonlocal minimal surfaces are precisely one of such cases 
(in which the nonlinearity is the outcome of a complex and 
nonlocal geometric problem)! 
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