On maximal regularity for viscous Hamilton-Jacobi equations

Marco Cirant
Università di Padova

February 28, 2021
joint works with A. Goff (Padova)

L^{q}-maximal regularity

For $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \gamma>1, \quad q \geq 1, \quad$ is it true that

$$
-\Delta u+|D u|^{\gamma} \in L^{q} \quad \Rightarrow \quad \Delta u,|D u|^{\gamma} \in L^{q} \quad ?
$$

L^{q}-maximal regularity

For $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \gamma>1, \quad q \geq 1$, is it true that

$$
-\Delta u+|D u|^{\gamma} \in L^{q} \quad \Rightarrow \quad \Delta u,|D u|^{\gamma} \in L^{q} \quad ?
$$

For $u: \Omega \times(0, T) \rightarrow \mathbb{R}, \quad \gamma>1, \quad q \geq 1, \quad$ is it true that

$$
\partial_{t} u-\Delta u+|D u|^{\gamma} \in L_{x, t}^{q} \quad \Rightarrow \quad \partial_{t} u, \Delta u,|D u|^{\gamma} \in L_{x, t}^{q} \quad ?
$$

Motivations

■ Stochastic optimal control: Hamilton-Jacobi

Motivations

■ Stochastic optimal control: Hamilton-Jacobi

- Theory of growth and roughening of surfaces: KPZ

Motivations

■ Stochastic optimal control: Hamilton-Jacobi
■ Theory of growth and roughening of surfaces: KPZ

- Mean Field Games:

$$
\left\{\begin{array}{l}
\left(-\partial_{t} u-\Delta u+\frac{|D u|^{\gamma}}{\gamma}=f(m(x, t))\right. \\
f_{t} m-\Delta m-\operatorname{div}\left(|D u|^{\gamma-2} D u m\right)=0
\end{array}\right.
$$

Motivations

■ Stochastic optimal control: Hamilton-Jacobi

- Theory of growth and roughening of surfaces: KPZ
- Mean Field Games:

$$
\left\{\begin{array}{l}
\left(-\partial_{t} u-\Delta u+\frac{\mid D u \gamma^{\gamma}}{\gamma}=f(m(x, t))\right. \\
\partial_{t} m-\Delta m-\operatorname{div}\left(|D u|^{\gamma-2} D u m\right)=0
\end{array}\right.
$$

■ Nonlinear Gagliardo-Nirenberg inequalities $(\gamma=2)$

Motivations

■ Stochastic optimal control: Hamilton-Jacobi
■ Theory of growth and roughening of surfaces: KPZ

- Mean Field Games:

$$
\left\{\begin{array}{l}
\left(-\partial_{t} u-\Delta u+\frac{|D u|^{\gamma}}{\gamma}=f(m(x, t))\right. \\
\partial_{t} m-\Delta m-\operatorname{div}\left(|D u|^{\gamma-2} D u m\right)=0
\end{array}\right.
$$

■ Nonlinear Gagliardo-Nirenberg inequalities $(\gamma=2)$
■ Conjectured by P.-L. Lions ~ '12-'14 to hold iff

$$
q>d \frac{\gamma-1}{\gamma}=: \bar{q}_{d, \gamma}
$$

(in the stationary setting)

On the exponent $\bar{q}_{d, \gamma}$

■ Gain of regularity: $\quad-\Delta u=-|D u|^{\gamma}+f$
$\|u\|_{w^{2}, 9} \lesssim\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q} \quad$ Calderón-Zygmund

On the exponent $\bar{q}_{d, \gamma}$

■ Gain of regularity: $\quad-\Delta u=-|D u|^{\gamma}+f$

$$
\|D u\|_{L^{*}} \lesssim\|u\|_{W^{2, q}} \leq\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q}=\|D u\|_{L_{2 q}}^{\gamma}+\|f\|_{L q}
$$

and

$$
q^{*}>\gamma q \quad \Leftrightarrow \quad q>\bar{q}_{d, \gamma}
$$

On the exponent $\bar{q}_{d, \gamma}$

- Gain of regularity: $\quad-\Delta u=-\mid$ Du $\left.\right|^{\gamma}+f$

$$
\|D u\|_{L^{*}} \lesssim\|u\|_{w^{2,9}} \lesssim\left\||D u|^{\gamma}\right\|_{L 9}+\|f\|_{L 9}=\|D u\|_{L q 9}^{\gamma}+\|f\|_{L q}
$$

and

$$
q^{*}>\gamma q \quad \Leftrightarrow \quad q>\bar{q}_{d, \gamma}
$$

- Scaling properties of the equation

On the exponent $\bar{q}_{d, \gamma}$

■ Gain of regularity: $\quad-\Delta u=-|D u|^{\gamma}+f$

$$
\|D u\|_{L q^{*}} \lesssim\|u\|_{w^{2,9}} \leqslant\left\||D u|^{\gamma}\right\|_{L 9}+\|f\|_{L q}=\|D u\|_{L r q}^{\gamma}+\|f\|_{L q}
$$

and

$$
q^{*}>\gamma q \quad \Leftrightarrow \quad q>\bar{q}_{d, \gamma}
$$

- Scaling properties of the equation
- $q \geq \bar{q}_{d, \gamma}$ is necessary for general existence of weak solutions [Hansson, Maz'ya, Verbitsky '99]

On the exponent $\bar{q}_{d, \gamma}$

■ Gain of regularity: $\quad-\Delta u=-\mid$ Du $\left.\right|^{\gamma}+f$

$$
\|D u\|_{L^{*}} \lesssim\|u\|_{w^{2}, 9} \lesssim\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q}=\|D u\|_{L q 9}^{\gamma}+\|f\|_{L q}
$$

and

$$
q^{*}>\gamma q \quad \Leftrightarrow \quad q>\bar{q}_{d, \gamma}
$$

- Scaling properties of the equation
- $q \geq \bar{q}_{d, \gamma}$ is necessary for general existence of weak solutions [Hansson, Maz'ya, Verbitsky '99]
- FALSE whenever $q<\bar{q}_{d, \gamma}$:
consider suitable truncations of $v(x) \sim|x|^{\frac{\gamma-2}{y-1}}$, which satisfies
$-\Delta v+|D v|^{\gamma}=0$.

Sub-quadratic vs Super-quadratic

"For Hamilton-Jacobi equations with second order diffusion having at most
quadratic growth in the first order term, the second order diffusion dominates at small scales."

The growth $\gamma=2$ is usually referred as the natural growth:

Sub-quadratic vs Super-quadratic

"For Hamilton-Jacobi equations with second order diffusion having at most
quadratic growth in the first order term, the second order diffusion dominates at small scales."

The growth $\gamma=2$ is usually referred as the natural growth:
■ L ${ }^{\infty}$ scaling: set $v_{\varepsilon}(x)=u(\varepsilon x)$, note that v_{ε} solves

$$
-\varepsilon^{\gamma-2} \Delta v_{\varepsilon}+\left|D v_{\varepsilon}\right|^{\gamma}=\varepsilon^{\gamma} f(\varepsilon x)
$$

Sub-quadratic vs Super-quadratic

"For Hamilton-Jacobi equations with second order diffusion having at most
quadratic growth in the first order term, the second order diffusion dominates at small scales."

The growth $\gamma=2$ is usually referred as the natural growth:
■ L ${ }^{\infty}$ scaling: set $v_{\varepsilon}(x)=u(\varepsilon x)$, note that v_{ε} solves

$$
-\varepsilon^{\gamma-2} \Delta v_{\varepsilon}+\left|D v_{\varepsilon}\right|^{\gamma}=\varepsilon^{\gamma} f(\varepsilon x)
$$

■ Euler-Lagrange equation for quadratic functionals

$$
\min \iint a(u) \frac{|D u|^{2}}{2} \quad-\operatorname{div}(a(u) D u)+\frac{1}{2} a^{\prime}(u)|D u|^{2}=0
$$

■ "invariance" through the chain rule

$$
\left.-\Delta u+|D u|^{2}=0^{u=\varphi(v)}-\Delta v+\varphi^{\prime}-\frac{\varphi^{\prime \prime}}{\varphi^{\prime}}\right)\left(|D v|^{2}=0\right.
$$

■ "invariance" through the chain rule

$$
\left.-\Delta u+|D u|^{2}=0^{u=\varphi(v)} \quad-\Delta v+\varphi^{\prime}-\frac{\varphi^{\prime \prime}}{\varphi^{\prime}}\right)\left(|D v|^{2}=0\right.
$$

■ Hopf-Cole transform

$$
-\Delta u+|D u|^{2}=f \quad u=-\log w \quad-\Delta w+w f=0
$$

■ "invariance" through the chain rule

$$
\left.-\Delta u+|D u|^{2}=0^{u=\varphi(v)} \quad-\Delta v+\varphi^{\prime}-\frac{\varphi^{\prime \prime}}{\varphi^{\prime}}\right)\left(|D v|^{2}=0\right.
$$

■ Hopf-Cole transform

$$
-\Delta u+|D u|^{2}=f \quad u=-\log w \quad-\Delta w+w f=0 .
$$

When $\gamma \leq 2$ on has typically:
■ General solvability with bounded and unbounded ingredients;

- Uniqueness of weak solutions

■ "invariance" through the chain rule

$$
\left.-\Delta u+|D u|^{2}=0^{u=\varphi(v)} \quad-\Delta v+\varphi^{\prime}-\frac{\varphi^{\prime \prime}}{\varphi^{\prime}}\right)\left(|D v|^{2}=0\right.
$$

■ Hopf-Cole transform

$$
-\Delta u+|D u|^{2}=f \quad u=-\log w \quad-\Delta w+w f=0 .
$$

When $\gamma \leq 2$ on has typically:

- General solvability with bounded and unbounded ingredients;
- Uniqueness of weak solutions

When $\gamma>2$, some "unnatural" phenomena occur, e.g.
■ Sub-solutions are Hölder continuous with bounded and unbounded f

■ Hölder continuity extends up to the boundary

Nonlinear G-N

If

$$
-\Delta u+|D u|^{2}=f
$$

and one has

$$
\left\||D u|^{2}\right\|_{L q} \leq C=C\left(\|f\|_{L q}\right),
$$

Nonlinear G-N

If

$$
-\Delta u+|D u|^{2}=f
$$

and one has

$$
\left\||D u|^{2}\right\|_{L q} \leq C=C\left(\|f\|_{L q}\right),
$$

since $w=e^{-u}$ satisfies $-\Delta w+w f=0$, we obtain

$$
\int \frac{|D w|^{2 q}}{w^{2 q}}=\int\left(|D u|^{2 q}=\left\||D u|^{2}\right\|_{L^{q}}^{q} \leq C\left(\|f\|_{L q}\right) \sim C \quad \int \frac{|\Delta w|^{q}}{w^{q}}\right)(
$$

The inequality can be proven using (linear) L^{9}-max. regularity and the Harnack inequality - for $q>\frac{d}{2}=\bar{q}_{d, 2}$.

Literature

■ Pioneering works [Serrin, Ladyzhenskaja, Amann, Crandall, Lions, ...] : strong solutions / weak (energy) solutions, $\gamma \leq 2$

Literature

■ Pioneering works [Serrin, Ladyzhenskaja, Amann, Crandall, Lions, ...] : strong solutions / weak (energy) solutions, $\gamma \leq 2$

■ [Boccardo, Murat, ...] distributional solutions for quasi-linear problems, $\gamma \leq 2$

Literature

■ Pioneering works [Serrin, Ladyzhenskaja, Amann, Crandall, Lions, ...] : strong solutions / weak (energy) solutions, $\gamma \leq 2$

■ [Boccardo, Murat, ...] distributional solutions for quasi-linear problems, $\gamma \leq 2$

■ Symmetrization techniques [Alvino, Ferone, Trombetti, ...]

Literature

■ Pioneering works [Serrin, Ladyzhenskaja, Amann, Crandall, Lions, ...] : strong solutions / weak (energy) solutions, $\gamma \leq 2$

■ [Boccardo, Murat, ...] distributional solutions for quasi-linear problems, $\gamma \leq 2$

■ Symmetrization techniques [Alvino, Ferone, Trombetti, ...]
■ Nonlinear potential theory [Maz'ya, Phuc, ...] , $\gamma>1$

Literature

■ Pioneering works [Serrin, Ladyzhenskaja, Amann, Crandall, Lions, ...] : strong solutions / weak (energy) solutions, $\gamma \leq 2$

■ [Boccardo, Murat, ...] distributional solutions for quasi-linear problems, $\gamma \leq 2$

■ Symmetrization techniques [Alvino, Ferone, Trombetti, ...]
■ Nonlinear potential theory [Maz'ya, Phuc, ...] , $\gamma>1$

- Viscosity solutions: $f \in C$ or $W^{1, \infty}$.

Bernstein's method

We need a genuinely nonlinear method.
Setting $v=|D u|^{2}, v$ solves

$$
-\Delta v+\gamma|D u|^{\gamma-2} D u \cdot D v+\left|D^{2} u\right|^{2}=D f \cdot D u .
$$

Bernstein's method

We need a genuinely nonlinear method.
Setting $v=|D u|^{2}, v$ solves

$$
-\Delta v+\gamma|D u|^{\gamma-2} D u \cdot D v+\left|D^{2} u\right|^{2}=D f \cdot D u .
$$

Equation can be plugged in

$$
\left|D^{2} u\right|^{2} \geq|\Delta u|^{2}=\left(|D u|^{\gamma}-f\right)^{2}
$$

to yield

$$
-\Delta v+v^{\gamma} \leq D f \cdot D u+f^{2}-v^{\frac{\gamma-1}{2}}|D v| .
$$

Bernstein's method

We need a genuinely nonlinear method.
Setting $v=|D u|^{2}, v$ solves

$$
-\Delta v+\gamma|D u|^{\gamma-2} D u \cdot D v+\left|D^{2} u\right|^{2}=D f \cdot D u .
$$

Equation can be plugged in

$$
\left|D^{2} u\right|^{2} \geq|\Delta u|^{2}=\left(|D u|^{\gamma}-f\right)^{2}
$$

to yield

$$
-\Delta v+v^{\gamma} \leq D f \cdot D u+f^{2}-v^{\frac{\gamma-1}{2}}|D v| .
$$

In this way, one obtains [Lions, '85]:

$$
D u \in L^{p} \text { for all } p, \quad f \in L^{q}, q>d
$$

Theorem

Let $f \in C^{1}\left(\mathbb{T}^{d}\right), \gamma>1$,

$$
q>d \frac{\gamma-1}{\gamma} \quad \text { and } q>2
$$

and $u \in C^{3}\left(\mathbb{T}^{d}\right)$ be a classical periodic solution to $H-J$.
Then, there exists $K=K\left(\|f\|_{q},\|D u\|_{1}, \gamma, q, d\right)>0$ such that

$$
\left\|D^{2} u\right\|_{L q\left(\mathbb{T}^{d}\right)}+\left\||D u|^{\gamma}\right\|_{L q\left(\mathbb{T}^{d}\right)} \leq K .
$$

Proof.

Via an (integral) Bernstein method: look at the equation satisfied by

$$
w=g\left(|D u|^{2}\right) \sim|D u|
$$

on its super-level sets, i.e. $\left\{w_{k}=(w-k)^{+} \geq 0\right\}$:

$$
-\Delta w_{k}+w^{2 \gamma-1} \leq|D f|+\frac{f^{2}}{|D u|}-w^{\gamma-1}\left|D w_{k}\right| .
$$

Proof.

Via an (integral) Bernstein method: look at the equation satisfied by

$$
w=g\left(|D u|^{2}\right) \sim|D u|
$$

on its super-level sets, i.e. $\left\{w_{k}=(w-k)^{+} \geq 0\right\}$:

$$
-\Delta w_{k}+w^{2 \gamma-1} \leq|D f|+\frac{f^{2}}{|D u|}-w^{\gamma-1}\left|D w_{k}\right| .
$$

Multiply the equation $w_{k^{\prime}}^{\beta} \beta>1$, integrate, \ldots to get

$$
Y_{k}=\int\left(w_{k}^{q \gamma}, \quad Y_{k}^{1-\frac{2}{d}} \leq Y_{k}+\varepsilon\right.
$$

control on Y_{k}.
(nonstandard approach in [Grenon-Murat-Porretta, Ann. Pisa '14])

- $d \frac{\gamma-1}{\gamma}<q<2$ (it might happen when $\gamma<\frac{2}{d-2}$)
- $d \frac{\gamma-1}{\gamma}<q<2$ (it might happen when $\gamma<\frac{2}{d-2}$)
- non-periodic version of the estimate, maybe local...

the elliptic case: open problems

- $d \frac{\gamma-1}{\gamma}<q<2$ (it might happen when $\gamma<\frac{2}{d-2}$)
- non-periodic version of the estimate, maybe local...
- $q=\bar{q}_{d, \gamma}$ should work when $\|f\|_{L q}$ is small, or for all $f \in L^{q}$ but for u satisfying

$$
-\Delta u+|D u|^{\gamma}+u=f
$$

the elliptic case: open problems

- $d \frac{\gamma-1}{\gamma}<q<2$ (it might happen when $\gamma<\frac{2}{d-2}$)
- non-periodic version of the estimate, maybe local...

■ $q=\bar{q}_{d, \gamma}$ should work when $\|f\|_{L a}$ is small, or for all $f \in L^{q}$ but for u satisfying

$$
-\Delta u+|D u|^{\gamma}+u=f
$$

- quasi-linear case? Δ replaced by Δ_{p}

the parabolic case

$$
\partial_{t} u-\Delta u+|D u|^{\gamma}=f \quad \stackrel{?}{\Rightarrow} \quad\left\|\partial_{t} u\right\|_{L_{x, t}^{q}}+\|\Delta u\|_{L_{x, t}^{q}}+\left\||D u|^{\gamma}\right\|_{L_{x, t}^{q}} \leq C\left(\|f\|_{L_{x, t}^{q}}\right)
$$

the parabolic case

$$
\partial_{t} u-\Delta u+|D u|^{\gamma}=f \quad \stackrel{?}{\Rightarrow}\left\|\partial_{t} u\right\|_{L_{x, t}^{q}}+\|\Delta u\|_{L_{x, t}^{q}}+\left\||D u|^{\gamma}\right\|_{L_{x, t}^{q}} \leq C\left(\|f\|_{L_{x, t}^{q}}\right)
$$

■ Bernstein's method breaks down: $v=|D u|^{2}, v$ solves

$$
\partial_{t} v-\Delta v+\gamma|D u|^{\gamma-2} D u \cdot D v+\left|D^{2} u\right|^{2}=D f \cdot D u .
$$

Plugging back the equation yields

$$
\partial_{t} v-\Delta v+v^{\gamma} \leq D f \cdot D u+f^{2}-\gamma|D u|^{\gamma-2} D u \cdot D v+\left(\partial_{t} u\right)^{2} .
$$

the parabolic case

$$
\partial_{t} u-\Delta u+|D u|^{\gamma}=f \quad \stackrel{?}{\Rightarrow}\left\|\partial_{t} u\right\|_{L_{x, t}^{q}}+\|\Delta u\|_{L_{x, t}^{q}}+\left\||D u|^{\gamma}\right\|_{L_{x, t}^{q}} \leq C\left(\|f\|_{L_{x, t}^{q}}\right)
$$

■ Bernstein's method breaks down: $v=|D u|^{2}, v$ solves

$$
\partial_{t} v-\Delta v+\gamma|D u|^{\gamma-2} D u \cdot D v+\left|D^{2} u\right|^{2}=D f \cdot D u .
$$

Plugging back the equation yields

$$
\partial_{t} v-\Delta v+v^{\gamma} \leq D f \cdot D u+f^{2}-\gamma|D u|^{\gamma-2} D u \cdot D v+\left(\partial_{t} u\right)^{2} .
$$

- One might conjecture that it holds for

$$
q \geq(d+2) \frac{\gamma-1}{\gamma}=\bar{q}_{d+2, \gamma},
$$

but no counterexamples available for the case " $<$ ".

the parabolic case

$$
\partial_{t} u-\Delta u+|D u|^{\gamma}=f \quad \stackrel{?}{\Rightarrow}\left\|\partial_{t} u\right\|_{L_{x, t}^{q}}+\|\Delta u\|_{L_{x, t}^{q}}+\left\||D u|^{\gamma}\right\|_{L_{x, t}^{q}} \leq C\left(\|f\|_{L_{x, t}^{q}}\right)
$$

■ Bernstein's method breaks down: $v=|D u|^{2}, v$ solves

$$
\partial_{t} v-\Delta v+\gamma|D u|^{\gamma-2} D u \cdot D v+\left|D^{2} u\right|^{2}=D f \cdot D u .
$$

Plugging back the equation yields

$$
\partial_{t} v-\Delta v+v^{\gamma} \leq D f \cdot D u+f^{2}-\gamma|D u|^{\gamma-2} D u \cdot D v+\left(\partial_{t} u\right)^{2} .
$$

■ One might conjecture that it holds for

$$
q \geq(d+2) \frac{\gamma-1}{\gamma}=\bar{q}_{d+2, \gamma},
$$

but no counterexamples available for the case " $<$ ".
■ $\gamma=2$: proof via Hopf-Cole (reduction to linear problem).

Taming the nonlinearity

By interpolation,

$$
\|D u\|_{L \times q} \lesssim\left\|D^{2} u\right\|_{L \|}^{\theta}\|u\|_{X}^{1-\theta} .
$$

Taming the nonlinearity

By interpolation,

$$
\|D u\|_{L \sim a} \lesssim\left\|D^{2} u\right\|_{L}^{\theta}\|u\|_{x}^{1-\theta} .
$$

Writing $\quad \partial_{t} u-\Delta u=-|D u|^{\gamma}+f$, by (linear) max. regularity

$$
\left\|\partial_{t} u\right\|_{q}+\left\|D^{2} u\right\|_{q} \lesssim\||D u|\|_{q \gamma}^{\gamma}+\left\|u_{0}\right\|+\|f\|_{q}
$$

Taming the nonlinearity

By interpolation,

$$
\|D u\|_{L \times a} \lesssim\left\|D^{2} u\right\|_{L \|}^{\theta}\|u\|_{x}^{1-\theta} .
$$

Writing $\quad \partial_{t} u-\Delta u=-|D u|^{\gamma}+f$, by (linear) max. regularity

$$
\begin{aligned}
\left\|\partial_{t} u\right\|_{q}+\left\|D^{2} u\right\|_{q} & \lesssim\||D u|\|_{q \gamma}^{\gamma}+\left\|u_{0}\right\|+\|f\|_{q} \\
& \lesssim \sup _{t}\|u(t)\| x \cdot\left\|D^{2} u\right\|_{q}^{\theta \gamma}+\left\|u_{0}\right\|+\|f\|_{q}
\end{aligned}
$$

We are done if $\theta \gamma<1$ and $\sup _{t}\|u(t)\|_{x}<\infty$.
p, α depending on d, q.

$$
x= \begin{cases}p & \text { if } \gamma<2 \\ f^{\alpha} & \text { if } \gamma \geq 2\end{cases}
$$

Estimates in L^{p} / C^{α}

■ LP: [Magliocca '18]
■ C ${ }^{\alpha}$: [Cardaliaguet-Silvestre '12, Stokols-Vasseur '18]

Estimates in L^{p} / C^{α}

- LP: [Magliocca '18]

■ C ${ }^{\alpha}$: [Cardaliaguet-Silvestre '12, Stokols-Vasseur '18]

Unified method via duality à la [Evans '10]: Linearize and consider the adjoint problem

$$
-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0, \quad b=-\gamma|D u|^{\gamma-2} D u
$$

Estimates in L^{P} / C^{α}

- L': [Magliocca '18]

■ C^{α} : [Cardaliaguet-Silvestre '12, Stokols-Vasseur '18]

Unified method via duality à la [Evans '10]: Linearize and consider the adjoint problem

$$
-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0, \quad b=-\gamma|D u|^{\gamma-2} D u
$$

Representation formula 1:

$$
\int u(t) \rho(t)+\iint|b|^{\gamma^{\prime}} \rho=\iint u(0) \rho(0)+\iint f \rho
$$

To estimate $\|u(t)\|_{L^{\rho}}$, let $\|\rho(t)\|_{L^{\prime}}=1$ and (try to) estimate $\rho \in L^{q^{\prime}}$.

Estimates in L^{P} / C^{α}

- L': [Magliocca '18]

■ C^{α} : [Cardaliaguet-Silvestre '12, Stokols-Vasseur '18]
Unified method via duality à la [Evans '10]: Linearize and consider the adjoint problem

$$
-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0, \quad b=-\gamma|D u|^{\gamma-2} D u
$$

Representation formula 2:

$$
\begin{aligned}
& \iint \frac{u(x+h, t)-u(x, t)}{|h|^{\alpha}} \rho(t) \leq \int \frac{u(x+h, 0)-u(x, 0)}{|h|^{\alpha}} \rho(t) \\
&+\iint f(x, t) \frac{\rho(x-h, t)-\rho(x, t)}{|h|^{\alpha}}
\end{aligned}
$$

To estimate $\|u(t)\|_{c^{\alpha}}$, let $\|\rho(t)\|_{L^{1}}=1$ and (try to) estimate $\rho \in L_{t}^{q^{\prime}} N_{x}^{\alpha, q^{\prime}}$.

Regularity of the dual equation

$$
\begin{gathered}
\text { Key fact: } b \text { in }-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0 \text { satisfies } \\
\iint|b|^{\gamma^{\prime}} \rho<\infty .
\end{gathered}
$$

Regularity of the dual equation

Key fact: b in $\quad-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0 \quad$ satisfies

$$
\iint|b|^{\gamma^{\prime}} \rho<\infty .
$$

Crucial Lemma:

$$
\|D \rho\|_{q^{\prime}} \leqslant u \oint \int|b|^{\prime} \rho+\|\rho(t)\|_{1}
$$

where

$$
q^{\prime}< \begin{cases}\frac{d+2}{d+1} & \text { if } \gamma \leq 2 \\ f^{2}+\frac{\gamma^{\prime}-1}{d+3-\gamma^{\prime}} & \text { if } \gamma>2\end{cases}
$$

obtained using linear max. regularity.

Theorem

Let $u \in W_{q}^{2,1}\left(\mathbb{T}^{d} \times(0, T)\right)$ be a strong solution to HJ and assume that for some $K>0$

$$
q> \begin{cases}(d+2) \frac{\gamma-1}{\gamma}=\bar{q}_{d+2, \gamma} & \text { if } \gamma<2 \\ (d+2) \frac{\gamma-1}{2}>\bar{q}_{d+2, \gamma} & \text { if } \gamma \geq 2\end{cases}
$$

then, there exists a constant $C>0$ depending on $\|f\|_{L^{q}\left(\mathbb{T}^{d} \times(0, T)\right)},\left\|u_{0}\right\|_{W^{2-\frac{2}{q}, q}\left(\mathbb{T}^{d}\right)}, q, d, T$ such that

$$
\|u\|_{W_{q}^{2,1}\left(Q_{T}\right)}+\|D u\|_{L \gamma q\left(Q_{T}\right)} \leq C .
$$

The parabolic case: a summary

L^{p} estimates, Hölder estimates and Lipschitz estimates

The critical case

When $\gamma<2$, we can prove max. regularity up to the threshold

$$
q=(d+2) \frac{\gamma-1}{\gamma}
$$

using a stability argument. Indeed, by interpolation we have

$$
\left\|D^{2} u\right\|_{L q} \lesssim \sup _{t}\|u(t)\|_{L^{L^{\gamma-1}} 2} \cdot\left\|D^{2} u\right\|_{L q}+\left\|u_{0}\right\|+\|f\|_{q}
$$

The critical case

When $\gamma<2$, we can prove max. regularity up to the threshold

$$
q=(d+2) \frac{\gamma-1}{\gamma}
$$

using a stability argument. Indeed, by interpolation we have

$$
\left\|D^{2} u\right\|_{L a} \lesssim \sup _{t}\|u(t)\|_{L^{\frac{\gamma-1}{2-\gamma}}} \cdot\left\|D^{2} u\right\|_{L q}+\left\|u_{0}\right\|+\|f\|_{q}
$$

Approximate f with smooth \tilde{f} and work on the equation involving $f-\tilde{f}$.
A byproduct of this procedure is that C in

$$
\|u\|_{W_{q}^{2,1}\left(Q_{T}\right)}+\|D u\|_{L^{\gamma q}\left(Q_{T}\right)} \leq C
$$

does not depend only on $\|f\|_{L^{q}\left(\mathbb{T}^{d} \times(0, T)\right)},\left\|u_{0}\right\|_{W^{2-\frac{2}{q}, q}\left(\mathbb{T}^{d}\right)}$!
the parabolic case: open problems

■ $(d+2) \frac{\gamma-1}{\gamma} \leq q<(d+2) \frac{\gamma-1}{2}$ in the super-quadratic case!

- $(d+2) \frac{\gamma-1}{\gamma} \leq q<(d+2) \frac{\gamma-1}{2}$ in the super-quadratic case!
- non-periodic version of the estimate, maybe local...
- $(d+2) \frac{\gamma-1}{\gamma} \leq q<(d+2) \frac{\gamma-1}{2}$ in the super-quadratic case!
- non-periodic version of the estimate, maybe local...
- counterexamples for $q<\bar{q}_{d+2, \gamma}$
- $(d+2) \frac{\gamma-1}{\gamma} \leq q<(d+2) \frac{\gamma-1}{2}$ in the super-quadratic case!
- non-periodic version of the estimate, maybe local...
- counterexamples for $q<\bar{q}_{d+2, \gamma}$
- quasi-linear case? Δ replaced by $\Delta_{p} \ldots$

Thank you for your attention!

