# Degenerate nonlinear parabolic equations with discontinuous diffusion coefficients 

Alpár R. Mészáros

1 ${ }^{\text {Nu }}$ University(based on joint works with Dohyun Kwon, UCLA)

Geometric and Functional Inequalities and
Recent Topics in Nonlinear PDEs
February 28 - March 12021

## Mathematical motivation

$\rightarrow$ Study the well-posedness and structure of solutions to diffusion equations with discontinuous nonlinearlies.
$\rightarrow$ Model problem:

$$
\begin{cases}\partial_{t} \rho-\Delta \varphi(\rho)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega,  \tag{NDE}\\ (\nabla \varphi(\rho)+\nabla \Phi \rho) \cdot \mathbf{n}=0, & \text { on }(0, T) \times \partial \Omega \\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega,\end{cases}
$$

where $T>0, \Omega \subset \mathbb{R}^{d}$ smooth, bounded convex domain, $\rho_{0} \in \mathscr{P}^{\text {ac }}(\Omega)$ and $\Phi: \Omega \rightarrow \mathbb{R}$ is a given Lipschitz continuous potential.

## Mathematical motivation

$\rightarrow$ Study the well-posedness and structure of solutions to diffusion equations with discontinuous nonlinearlies.
$\rightarrow$ Model problem:

$$
\begin{cases}\partial_{t} \rho-\Delta \varphi(\rho)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega,  \tag{NDE}\\ (\nabla \varphi(\rho)+\nabla \Phi \rho) \cdot \mathbf{n}=0, & \text { on }(0, T) \times \partial \Omega \\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega,\end{cases}
$$

where $T>0, \Omega \subset \mathbb{R}^{d}$ smooth, bounded convex domain, $\rho_{0} \in \mathscr{P}^{\text {ac }}(\Omega)$ and $\Phi: \Omega \rightarrow \mathbb{R}$ is a given Lipschitz continuous potential.
$\rightarrow \varphi:[0,+\infty) \rightarrow \mathbb{R}$ is monotone increasing and is supposed to have a discontinuity at $\rho=1$, so it is extended to multi-valued function at the discontinuity.

## Mathematical motivation

$\rightarrow$ Study the well-posedness and structure of solutions to diffusion equations with discontinuous nonlinearlies.
$\rightarrow$ Model problem:

$$
\begin{cases}\partial_{t} \rho-\Delta \varphi(\rho)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega,  \tag{NDE}\\ (\nabla \varphi(\rho)+\nabla \Phi \rho) \cdot \mathbf{n}=0, & \text { on }(0, T) \times \partial \Omega \\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega,\end{cases}
$$

where $T>0, \Omega \subset \mathbb{R}^{d}$ smooth, bounded convex domain, $\rho_{0} \in \mathscr{P}^{\text {ac }}(\Omega)$ and $\Phi: \Omega \rightarrow \mathbb{R}$ is a given Lipschitz continuous potential.
$\rightarrow \varphi:[0,+\infty) \rightarrow \mathbb{R}$ is monotone increasing and is supposed to have a discontinuity at $\rho=1$, so it is extended to multi-valued function at the discontinuity.
$\rightarrow$ Example of a nonlinearity

$$
\varphi:[0,+\infty) \rightarrow \mathbb{R}, \varphi(s)= \begin{cases}\rho, & \rho \in[0,1) \\ {[\rho, 2 \rho],} & \rho=1 \\ 2 \rho, & \rho>1,\end{cases}
$$

## Motivation: Starvation driven diffusion in mathematical biology

$\rightarrow$ A competition between a linear diffusion and a starvation driven diffusion:

$$
\partial_{t} u=d \Delta u+u(m-u-v), \partial_{t} v=\Delta \varphi(v ; m)+v(m-u-v)
$$

where $u, v$ represent two population densities and $m$ stands for the resource density.
$\rightarrow$ For $0<l<h, \varphi(v ; m):= \begin{cases}l v, & \text { if } v<m, \\ h v, & \text { if } v>m .\end{cases}$
$\rightarrow$ Cho-Kim [2013, Bull. Math. Biol.] ("Starvation driven diffusion as a survival strategy of biological organisms") (Ex: $\Omega=(0,1), m$ discontinuous with two constant values and $u(0, \cdot)=v(0, \cdot)=m / 2 ; l=0.002, h=0.004)$


## Motivation: self-organized criticality in physics

$\rightarrow$ Bántay-Jánosi [1992, Phys. Rew. Let.] ("Avalanche dynamics from anomalous diffusion" - self organized criticality in sandpile models).
$\rightarrow$ Same problem as (NDE), with $\Phi=0, \varphi(\rho)=f(\rho) H\left(\rho-\rho_{c}\right)$, where $f$ is some given function (either identity, or a constant), $H$ is the Heaviside function and $\rho_{c}$ stands for the critical density value.


Figure: Avalanches in the Himalayas


Figure: Time evolution of $\rho, \rho_{c}=1$ [Bántay-Jánosi, 1992]

## Mathematical literature on the previous models

$\rightarrow$ Then case when $\varphi$ is continuous has been studied extensively by many-many authors.

## Mathematical literature on the previous models

$\rightarrow$ Then case when $\varphi$ is continuous has been studied extensively by many-many authors.

For $\varphi$ discontinuous:
$\rightarrow$ Blanchard-Röckner-Russo [2010, Ann. Probab.] $\rightarrow|\varphi(\rho)| \leq C \rho$; probabilistic approach in 1D; non-degenerate case.
$\rightarrow$ Barbu-Röckner-Russo, [2011, PTRF] $\rightarrow$ same model, probabilistic approach in 1D; degenerate case.

## Mathematical literature on the previous models

$\rightarrow$ Then case when $\varphi$ is continuous has been studied extensively by many-many authors.

For $\varphi$ discontinuous:
$\rightarrow$ Blanchard-Röckner-Russo [2010, Ann. Probab.] $\rightarrow|\varphi(\rho)| \leq C \rho$; probabilistic approach in 1D; non-degenerate case.
$\rightarrow$ Barbu-Röckner-Russo, [2011, PTRF] $\rightarrow$ same model, probabilistic approach in 1D; degenerate case.
$\rightarrow$ Barbu-Röckner [2018, SIMA] $\rightarrow$ higher dimensions; probabilistic approach; nonlinear semigroup theory $\rightarrow$ maximal monotone operators, parabolic approximation, i.e. $\varphi_{\varepsilon} \rightarrow \varphi$.
$\rightarrow$ Notion of solution: generalized entropic solutions à la Kruzkov.
$\rightarrow$ This heuristically can be written as pairs $\left(\rho, \eta_{\rho}\right)$ belonging to well-chosen function spaces, such that

$$
\partial_{t} \rho-\Delta\left(\eta_{\rho}\right)-\nabla \cdot(\nabla \Phi \rho)=0
$$

is fulfilled and $\rho(t, x) \in \eta_{\rho}(t, x)$ a.e.

## Our main objectives

(1) Find a unified way to treat general discontinuous nonlinearities.
(2) Give a fine characterization of the emerging critical regions $\{\rho=1\}$ observed in numerical experiments.

## Our approach: optimal transport and gradient flows

OT toolbox
$\rightarrow$ for $\mu, \nu \in \mathscr{P}(\Omega)$ we define the 2-Wasserstein distance $W_{2}$ as

$$
W_{2}^{2}(\mu, \nu):=\inf \left\{\int_{\Omega \times \Omega}|x-y|^{2} \mathrm{~d} \gamma: \gamma \in \mathscr{P}(\Omega \times \Omega),\left(\pi^{x}\right)_{\# \gamma}=\mu,\left(\pi^{y}\right)_{\#} \gamma=\nu\right\}
$$

where for $T: X \rightarrow Y$ Borel function $T_{\#} \mu=\nu$ means that $\nu(A)=\mu\left(T^{-1}(A)\right)$ for any $A \subseteq Y$ Borel set.
$\rightarrow$ we have the dual formulation

$$
W_{2}^{2}(\mu, \nu):=\sup \left\{\int_{\Omega} \phi \mathrm{d} \mu+\int_{\Omega} \psi \mathrm{d} \nu: \phi, \psi \in C_{b}(\Omega), \phi(x)+\psi(y) \leq|x-y|^{2}\right\} .
$$

## Our approach: optimal transport and gradient flows

OT toolbox
$\rightarrow$ for $\mu, \nu \in \mathscr{P}(\Omega)$ we define the 2-Wasserstein distance $W_{2}$ as

$$
W_{2}^{2}(\mu, \nu):=\inf \left\{\int_{\Omega \times \Omega}|x-y|^{2} \mathrm{~d} \gamma: \gamma \in \mathscr{P}(\Omega \times \Omega),\left(\pi^{x}\right)_{\# \gamma}=\mu,\left(\pi^{y}\right)_{\# \gamma}=\nu\right\}
$$

where for $T: X \rightarrow Y$ Borel function $T_{\#} \mu=\nu$ means that $\nu(A)=\mu\left(T^{-1}(A)\right)$ for any $A \subseteq Y$ Borel set.
$\rightarrow$ we have the dual formulation

$$
W_{2}^{2}(\mu, \nu):=\sup \left\{\int_{\Omega} \phi \mathrm{d} \mu+\int_{\Omega} \psi \mathrm{d} \nu: \phi, \psi \in C_{b}(\Omega), \phi(x)+\psi(y) \leq|x-y|^{2}\right\}
$$

$\rightarrow$ for any finite measure $\chi$ s.t. $\chi(\Omega)=0$ we have the first variation formula

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \frac{1}{2} W_{2}^{2}(\mu+t \chi, \nu)=\int_{\Omega} \phi \mathrm{d} \chi
$$

$\rightarrow$ Brenier [1991, CPAM]: if $\mu \in \mathscr{P}^{\text {ac }}(\Omega)$, then $\gamma_{\mathrm{opt}}=(\mathrm{id}, T)_{\#} \mu$, with $T=\mathrm{id}-\nabla \phi_{\mathrm{opt}}$.

## Gradient flows in $\left(\mathscr{P}(\Omega), W_{2}\right)$

$\rightarrow$ noticed by Otto (see [2001, CPDE]), and Ambrosio-Gigli-Savaré (see [2005, Birkhäuser, Springer]) ( $\left.\mathscr{P}(\Omega), W_{2}\right)$ has a differential geometric structure

## Gradient flows in $\left(\mathscr{P}(\Omega), W_{2}\right)$

$\rightarrow$ noticed by Otto (see [2001, CPDE]), and Ambrosio-Gigli-Savaré (see [2005, Birkhäuser, Springer]) ( $\left.\mathscr{P}(\Omega), W_{2}\right)$ has a differential geometric structure $\rightarrow$ as a consequence, many diffusion equations can be seen as gradient flows in $\left(\mathscr{P}(\Omega), W_{2}\right)$.
$\rightarrow$ for example $\partial_{t} \rho-\Delta \rho=0$ can be seen as the GF of the Boltzmann entropy $\mathcal{J}(\rho)=\int_{\Omega} \rho \log (\rho) \mathrm{d} x$.

## Gradient flows in $\left(\mathscr{P}(\Omega), W_{2}\right)$

$\rightarrow$ noticed by Otto (see [2001, CPDE]), and Ambrosio-Gigli-Savaré (see [2005, Birkhäuser, Springer] $)\left(\mathscr{P}(\Omega), W_{2}\right)$ has a differential geometric structure $\rightarrow$ as a consequence, many diffusion equations can be seen as gradient flows in $\left(\mathscr{P}(\Omega), W_{2}\right)$.
$\rightarrow$ for example $\partial_{t} \rho-\Delta \rho=0$ can be seen as the GF of the Boltzmann entropy $\mathcal{J}(\rho)=\int_{\Omega} \rho \log (\rho) \mathrm{d} x$.
De Giorgi's minimizing movements scheme (cf. Jordan-Kinderlehrer-Otto [1998, SIMA])
$\rightarrow$ let $\rho_{0}$ be given and $N \in \mathbb{N}$ and $\tau>0$ be such that $T=N \tau$. Construct the recursive sequence for all $k \in\{1, \ldots, N\}$

$$
\begin{equation*}
\rho_{k} \in \operatorname{argmin}_{\rho \in \mathscr{P}(\Omega)}\left\{\mathcal{J}(\rho)+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \rho_{k-1}\right)\right\} \tag{MM}
\end{equation*}
$$

$\rightarrow$ optimality condition $\log \left(\rho_{k}\right)+1+\frac{\phi_{k}}{\tau}=$ const on $\operatorname{spt}\left(\rho_{k}\right)$.
$\rightarrow$ approximate velocity $\mathbf{v}_{k}^{\tau}:=\frac{x-T_{k}(x)}{\tau}=\frac{\nabla \phi_{k}}{\tau}=-\frac{\nabla \rho_{k}}{\rho_{k}}$.
$\rightarrow$ after interpolations, the limit curve, as $\tau \downarrow 0$ solves $\partial_{t} \rho+\nabla \cdot(\rho \mathbf{v})=0$.

## Back to our problems

$\rightarrow$ We define the energy associated to our models as

$$
\mathcal{J}(\rho):=\mathcal{S}(\rho)+\mathcal{F}(\rho):=\int_{\Omega} S(\rho(x)) \mathrm{d} x+\int_{\Omega} \Phi \mathrm{d} \rho(x)
$$

## Back to our problems

$\rightarrow$ We define the energy associated to our models as

$$
\mathcal{J}(\rho):=\mathcal{S}(\rho)+\mathcal{F}(\rho):=\int_{\Omega} S(\rho(x)) \mathrm{d} x+\int_{\Omega} \Phi \mathrm{d} \rho(x)
$$

$\rightarrow$ If $S:(0,+\infty) \rightarrow \mathbb{R}$ is differentiable (or $\varphi$ is continuous), then we have the correspondence

$$
\varphi(\rho)=\rho S^{\prime}(\rho)-S(\rho)+S(1) .
$$

## Back to our problems

$\rightarrow$ We define the energy associated to our models as

$$
\mathcal{J}(\rho):=\mathcal{S}(\rho)+\mathcal{F}(\rho):=\int_{\Omega} S(\rho(x)) \mathrm{d} x+\int_{\Omega} \Phi \mathrm{d} \rho(x)
$$

$\rightarrow$ If $S:(0,+\infty) \rightarrow \mathbb{R}$ is differentiable (or $\varphi$ is continuous), then we have the correspondence

$$
\varphi(\rho)=\rho S^{\prime}(\rho)-S(\rho)+S(1) .
$$

$\rightarrow$ In our setting, we will consider $S$ convex, twice continuously differentiable, except at $\rho=1$, where is not differentiable. Thus, some care is needed when writing the previous identity.

## Back to our problems

$\rightarrow$ We define the energy associated to our models as

$$
\mathcal{J}(\rho):=\mathcal{S}(\rho)+\mathcal{F}(\rho):=\int_{\Omega} S(\rho(x)) \mathrm{d} x+\int_{\Omega} \Phi \mathrm{d} \rho(x)
$$

$\rightarrow$ If $S:(0,+\infty) \rightarrow \mathbb{R}$ is differentiable (or $\varphi$ is continuous), then we have the correspondence

$$
\varphi(\rho)=\rho S^{\prime}(\rho)-S(\rho)+S(1) .
$$

$\rightarrow$ In our setting, we will consider $S$ convex, twice continuously differentiable, except at $\rho=1$, where is not differentiable. Thus, some care is needed when writing the previous identity.
$\rightarrow$ We consider the GF of the functional $\mathcal{J}$ in $\left(\mathscr{P}(\Omega), W_{2}\right)$.
$\rightarrow \mathcal{J}$ fails to be differentiable. Therefore the classical theory does not imply directly; one needs to work with subdifferential calculus.
$\rightarrow$ We need to rely on the scheme (MM). To write optimality conditions, we characterize the Wasserstein subdifferential of $\mathcal{J}$.

## Estimates

$\rightarrow$ We need to choose carefully the function spaces: we work in $L^{p}(\Omega)$, $1<p \leq+\infty$.

Lemma ( $L^{\infty}$ estimates)
Let $\rho_{0} \in L^{\infty}(\Omega)$. Let $\left(\rho_{k}\right)_{k=1}^{N}$ be constructed via the scheme (MM). Then we have

$$
\left\|\rho_{k}\right\|_{L^{\infty}} \leq C(T, \Phi)\left\|\rho_{0}\right\|_{L^{\infty}}, \forall k \in\{1, \ldots, N\}
$$

## Estimates

$\rightarrow$ We need to choose carefully the function spaces: we work in $L^{p}(\Omega)$, $1<p \leq+\infty$.

Lemma ( $L^{\infty}$ estimates)
Let $\rho_{0} \in L^{\infty}(\Omega) . \operatorname{Let}\left(\rho_{k}\right)_{k=1}^{N}$ be constructed via the scheme (MM). Then we have

$$
\left\|\rho_{k}\right\|_{L^{\infty}} \leq C(T, \Phi)\left\|\rho_{0}\right\|_{L^{\infty}}, \forall k \in\{1, \ldots, N\}
$$

$\rightarrow$ Proof: easy argument combining [Santambrogio, 2015, Springer] and [Carrillo-Santambrogio, QAM, 2018].

## Estimates

$\rightarrow$ We need to choose carefully the function spaces: we work in $L^{p}(\Omega)$,

$$
1<p \leq+\infty
$$

Lemma ( $L^{\infty}$ estimates)
Let $\rho_{0} \in L^{\infty}(\Omega)$. Let $\left(\rho_{k}\right)_{k=1}^{N}$ be constructed via the scheme (MM). Then we have

$$
\left\|\rho_{k}\right\|_{L^{\infty}} \leq C(T, \Phi)\left\|\rho_{0}\right\|_{L^{\infty}}, \forall k \in\{1, \ldots, N\}
$$

$\rightarrow$ Proof: easy argument combining [Santambrogio, 2015, Springer] and [Carrillo-Santambrogio, QAM, 2018].

Lemma ( $L^{\beta}$ estimates)
Let $\rho_{0} \in \mathscr{P}(\Omega)$ such that $\mathcal{J}\left(\rho_{0}\right)<+\infty$. Let $S^{\prime \prime}(\rho) \geq C \rho^{r-2}$, if $\rho \in(1,+\infty)$ for some $r \geq 1$. Let $\left(\rho_{k}\right)_{k=1}^{N}$ be constructed via the scheme (MM). Then we have

$$
\left\|\rho_{k}\right\|_{L^{\beta}} \leq C(T, \Phi, 1 / \tau), \forall k \in\{1, \ldots, N\}
$$

where $\beta:= \begin{cases}(2 r-1) \frac{d}{d-2}, & d \geq 3, \\ <+\infty, & d=2, \\ +\infty, & d=1\end{cases}$

## Estimates and optimality conditions

$\rightarrow$ As a consequence, we have uniform $L^{\beta}([0, T] \times \Omega)$ estimates on the piecewise constant interpolations $\left(\rho^{\tau}\right)_{\tau>0}$.

## Estimates and optimality conditions

$\rightarrow$ As a consequence, we have uniform $L^{\beta}([0, T] \times \Omega)$ estimates on the piecewise constant interpolations $\left(\rho^{\tau}\right)_{\tau>0}$.
$\rightarrow$ We compute subdifferentials in $L^{p}(\Omega)^{\star}$ (including $p=+\infty$ ). We have
Theorem
For all $k \in\{1, \ldots, N\}$, there exists $C=C(k) \in \mathbb{R}$ and $\phi_{k}$ such that

$$
\begin{cases}C-\frac{\phi_{k}}{\tau}-\Phi \leq S^{\prime}(0+) & \text { in }\left\{\rho_{k}=0\right\}, \\ C-\frac{\phi_{k}}{\tau}-\Phi \in\left[S^{\prime}(1-), S^{\prime}(1+)\right], & \text { in }\left\{\rho_{k}=1\right\}, \\ C-\frac{\phi_{k}}{\tau}-\Phi=S^{\prime} \circ \rho_{k}, & \text { otherwise. }\end{cases}
$$

## Estimates and optimality conditions

$\rightarrow$ As a consequence, we have uniform $L^{\beta}([0, T] \times \Omega)$ estimates on the piecewise constant interpolations $\left(\rho^{\tau}\right)_{\tau>0}$.
$\rightarrow$ We compute subdifferentials in $L^{p}(\Omega)^{\star}$ (including $p=+\infty$ ). We have
Theorem
For all $k \in\{1, \ldots, N\}$, there exists $C=C(k) \in \mathbb{R}$ and $\phi_{k}$ such that

$$
\begin{cases}C-\frac{\phi_{k}}{\tau}-\Phi \leq S^{\prime}(0+) & \text { in }\left\{\rho_{k}=0\right\} \\ C-\frac{\phi_{k}}{\tau}-\Phi \in\left[S^{\prime}(1-), S^{\prime}(1+)\right], & \text { in }\left\{\rho_{k}=1\right\}, \\ C-\frac{\phi_{k}}{\tau}-\Phi=S^{\prime} \circ \rho_{k}, & \text { otherwise } .\end{cases}
$$

Theorem
For $\rho_{k}$ is given in (MM), if $\xi \in \partial \mathcal{S}\left(\rho_{k}\right) \cap L^{1}(\Omega)$, then it holds that

$$
\xi \in \begin{cases}{\left[-\infty, S^{\prime}(0+)\right]} & \text { in }\left\{\rho_{k}=0\right\},  \tag{1}\\ {\left[S^{\prime}(1-), S^{\prime}(1+)\right]} & \text { in }\left\{\rho_{k}=1\right\}, \\ S^{\prime} \circ \rho_{k} & \text { in }\left\{\rho_{k} \neq 1\right\},\end{cases}
$$

## More on optimality conditions and a new variable

$\rightarrow$ proof uses a theorem of Rockafellar [1971, PJM]; we can also show that $\xi^{\text {s }}=0$.

## More on optimality conditions and a new variable

$\rightarrow$ proof uses a theorem of Rockafellar [1971, PJM]; we can also show that $\xi^{s}=0$.
$\rightarrow$ Question: how do we identify the approximate velocity, i.e. $\frac{\nabla \phi_{k}}{\tau}$ ?

## More on optimality conditions and a new variable

$\rightarrow$ proof uses a theorem of Rockafellar [1971, PJM]; we can also show that $\xi^{\text {s }}=0$.
$\rightarrow$ Question: how do we identify the approximate velocity, i.e. $\frac{\nabla \phi_{k}}{\tau}$ ?
$\rightarrow$ Answer: inspired by the analysis of Maury-Roudneff-Chupin-Santambrogio [2010, M3AM] (also [M.-Santambrogio, 2016, APDE]), we introduce a new variable:
$\rightarrow$ For $k \in\{1, \ldots, N\}$, we define $p_{k}: \Omega \rightarrow \mathbb{R}$ as

$$
p_{k}:= \begin{cases}\max \left\{C-\frac{\phi_{k}}{\tau}-\Phi, S^{\prime}(1-)\right\} & \text { in }\left\{\rho_{k}<1\right\} \\ C-\frac{\phi_{k}}{\tau}-\Phi & \text { in }\left\{\rho_{k}=1\right\} \\ \min \left\{C-\frac{\phi_{k}}{\tau}-\Phi, S^{\prime}(1+)\right\} & \text { in }\left\{\rho_{k}>1\right\}\end{cases}
$$

$\rightarrow$ Or, equivalently

$$
p_{k}=\min \left\{\max \left\{C-\frac{\phi_{k}}{\tau}-\Phi, S^{\prime}(1-)\right\}, S^{\prime}(1+)\right\}
$$

## A model problem

$\rightarrow$ Regularity of $p_{k}$ : Since $\phi_{k}$ and $\Phi$ are Lipschitz continuous, so is $p_{k}$ !

## A model problem

$\rightarrow$ Regularity of $p_{k}$ : Since $\phi_{k}$ and $\Phi$ are Lipschitz continuous, so is $p_{k}$ !
$\rightarrow$ Now, the optimality condition can be written in a unified way!

## A model problem

$\rightarrow$ Regularity of $p_{k}$ : Since $\phi_{k}$ and $\Phi$ are Lipschitz continuous, so is $p_{k}$ !
$\rightarrow$ Now, the optimality condition can be written in a unified way!
$\rightarrow$ Let us illustrate this in the example of $S(\rho):= \begin{cases}\rho \log \rho, & \text { for } \rho \in[0,1], \\ 2 \rho \log \rho, & \text { for } \rho \in(1,+\infty) .\end{cases}$

## A model problem

$\rightarrow$ Regularity of $p_{k}$ : Since $\phi_{k}$ and $\Phi$ are Lipschitz continuous, so is $p_{k}$ !
$\rightarrow$ Now, the optimality condition can be written in a unified way!
$\rightarrow$ Let us illustrate this in the example of $S(\rho):= \begin{cases}\rho \log \rho, & \text { for } \rho \in[0,1], \\ 2 \rho \log \rho, & \text { for } \rho \in(1,+\infty) .\end{cases}$
$\rightarrow$ We have

$$
p_{k}:= \begin{cases}1 & \text { in }\left\{\rho_{k}<1\right\} \\ C-\frac{\phi_{k}}{\tau}-\Phi & \text { in }\left\{\rho_{k}=1\right\} \\ 2 & \text { in }\left\{\rho_{k}>1\right\}\end{cases}
$$

and the optimality conditions read as

## A model problem

$\rightarrow$ Regularity of $p_{k}$ : Since $\phi_{k}$ and $\Phi$ are Lipschitz continuous, so is $p_{k}$ !
$\rightarrow$ Now, the optimality condition can be written in a unified way!
$\rightarrow$ Let us illustrate this in the example of $S(\rho):= \begin{cases}\rho \log \rho, & \text { for } \rho \in[0,1], \\ 2 \rho \log \rho, & \text { for } \rho \in(1,+\infty) .\end{cases}$
$\rightarrow$ We have

$$
p_{k}:= \begin{cases}1 & \text { in }\left\{\rho_{k}<1\right\} \\ C-\frac{\phi_{k}}{\tau}-\Phi & \text { in }\left\{\rho_{k}=1\right\} \\ 2 & \text { in }\left\{\rho_{k}>1\right\}\end{cases}
$$

and the optimality conditions read as
Lemma
For all $k \in\{1, \ldots, N\}$, there exists $C \in \mathbb{R}$ such that

$$
p_{k}\left(1+\log \rho_{k}\right)+\frac{\phi_{k}}{\tau}+\Phi=C \text { a.e. }
$$

In particular, both $p_{k}$ and $\rho_{k}$ are Lipschitz continuous and $\rho_{k}>0$ a.e.

## A model problem

$\rightarrow$ Regularity of $p_{k}$ : Since $\phi_{k}$ and $\Phi$ are Lipschitz continuous, so is $p_{k}$ !
$\rightarrow$ Now, the optimality condition can be written in a unified way!
$\rightarrow$ Let us illustrate this in the example of $S(\rho):= \begin{cases}\rho \log \rho, & \text { for } \rho \in[0,1], \\ 2 \rho \log \rho, & \text { for } \rho \in(1,+\infty) .\end{cases}$
$\rightarrow$ We have

$$
p_{k}:= \begin{cases}1 & \text { in }\left\{\rho_{k}<1\right\} \\ C-\frac{\phi_{k}}{\tau}-\Phi & \text { in }\left\{\rho_{k}=1\right\} \\ 2 & \text { in }\left\{\rho_{k}>1\right\}\end{cases}
$$

and the optimality conditions read as
Lemma
For all $k \in\{1, \ldots, N\}$, there exists $C \in \mathbb{R}$ such that

$$
p_{k}\left(1+\log \rho_{k}\right)+\frac{\phi_{k}}{\tau}+\Phi=C \text { a.e. }
$$

In particular, both $p_{k}$ and $\rho_{k}$ are Lipschitz continuous and $\rho_{k}>0$ a.e.
$\rightarrow$ As a consequence, $\frac{\nabla \phi_{k}}{\tau}=-\nabla \Phi-\nabla p_{k}-p_{k} \frac{\nabla \rho_{k}}{\rho_{k}}\left(\right.$ since $\left.\nabla p_{k} \log \left(\rho_{k}\right)=0\right)$.

## Uniform estimates and passing to the limit at $\tau \downarrow 0$

$\rightarrow$ Let us notice that

$$
\frac{1}{\tau} \sum_{k=1}^{N} W_{2}^{2}\left(\rho_{k}, \rho_{k-1}\right)=\frac{1}{\tau} \sum_{k=1}^{N} \int_{\Omega}\left|\nabla \phi_{k}\right|^{2} \leq \mathcal{J}\left(\rho_{0}\right)-\inf \mathcal{J} .
$$

## Uniform estimates and passing to the limit at $\tau \downarrow 0$

$\rightarrow$ Let us notice that

$$
\frac{1}{\tau} \sum_{k=1}^{N} W_{2}^{2}\left(\rho_{k}, \rho_{k-1}\right)=\frac{1}{\tau} \sum_{k=1}^{N} \int_{\Omega}\left|\nabla \phi_{k}\right|^{2} \leq \mathcal{J}\left(\rho_{0}\right)-\inf \mathcal{J} .
$$

$\rightarrow$ From here, the piecewise constant interpolations satisfy: $\left(\sqrt{\rho^{\tau}}\right)_{\tau>0}$ and $\left(p^{\tau}\right)_{\tau>0}$ are uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.

## Uniform estimates and passing to the limit at $\tau \downarrow 0$

$\rightarrow$ Let us notice that

$$
\frac{1}{\tau} \sum_{k=1}^{N} W_{2}^{2}\left(\rho_{k}, \rho_{k-1}\right)=\frac{1}{\tau} \sum_{k=1}^{N} \int_{\Omega}\left|\nabla \phi_{k}\right|^{2} \leq \mathcal{J}\left(\rho_{0}\right)-\inf \mathcal{J} .
$$

$\rightarrow$ From here, the piecewise constant interpolations satisfy: $\left(\sqrt{\rho^{\tau}}\right)_{\tau>0}$ and $\left(p^{\tau}\right)_{\tau>0}$ are uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.
$\rightarrow$ If in addition, $\rho_{0} \in L^{\infty}(\Omega)$, then $\left(\rho^{\tau}\right)_{\tau>0}$ is uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.

## Uniform estimates and passing to the limit at $\tau \downarrow 0$

$\rightarrow$ Let us notice that

$$
\frac{1}{\tau} \sum_{k=1}^{N} W_{2}^{2}\left(\rho_{k}, \rho_{k-1}\right)=\frac{1}{\tau} \sum_{k=1}^{N} \int_{\Omega}\left|\nabla \phi_{k}\right|^{2} \leq \mathcal{J}\left(\rho_{0}\right)-\inf \mathcal{J}
$$

$\rightarrow$ From here, the piecewise constant interpolations satisfy: $\left(\sqrt{\rho^{\tau}}\right)_{\tau>0}$ and $\left(p^{\tau}\right)_{\tau>0}$ are uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.
$\rightarrow$ If in addition, $\rho_{0} \in L^{\infty}(\Omega)$, then $\left(\rho^{\tau}\right)_{\tau>0}$ is uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.

Theorem
Suppose that $\rho_{0} \in L^{\infty}(\Omega)$ and $\nabla \Phi \cdot \mathbf{n}>0$ on $\partial \Omega$. Then, there exists $\rho, p \in L^{\infty}([0, T] \times \Omega) \cap L^{2}\left([0, T] ; H^{1}(\Omega)\right)$ such that $(\rho, p)$ is a unique solution to

$$
\begin{cases}\partial_{t} \rho-\Delta(p \rho)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega  \tag{2}\\ (\nabla(p \rho)+\nabla \Phi \rho) \cdot \mathbf{n}=0, & \text { on }(0, T) \times \partial \Omega \\ \rho(\cdot, 0)=\rho_{0}, & \text { in } \Omega,\end{cases}
$$

in the sense of distribution.

## Some remarks

Remark
$(\rho, p)$ satisfies

$$
\begin{cases}p=1 & \text { a.e. in }\{0<\rho<1\} \\ p \in[1,2] & \text { a.e. in }\{\rho=1\} \\ p=2 & \text { a.e. in }\{\rho>1\}\end{cases}
$$

## Some remarks

Remark
$(\rho, p)$ satisfies

$$
\begin{cases}p=1 & \text { a.e. in }\{0<\rho<1\} \\ p \in[1,2] & \text { a.e. in }\{\rho=1\} \\ p=2 & \text { a.e. in }\{\rho>1\}\end{cases}
$$

Remark
If we consider more general initial, i.e. $\rho_{0} \in \mathscr{P}(\Omega)$ such that $\mathcal{E}\left(\rho_{0}\right)<+\infty$, we find a solution

$$
\rho \in L^{\beta}([0, T] \times \Omega) \text { and } p \in L^{2}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{\infty}([0, T] \times \Omega)
$$

with $\sqrt{\rho} \in L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.

## Some remarks

Remark
$(\rho, p)$ satisfies

$$
\begin{cases}p=1 & \text { a.e. in }\{0<\rho<1\} \\ p \in[1,2] & \text { a.e. in }\{\rho=1\} \\ p=2 & \text { a.e. in }\{\rho>1\}\end{cases}
$$

Remark
If we consider more general initial, i.e. $\rho_{0} \in \mathscr{P}(\Omega)$ such that $\mathcal{E}\left(\rho_{0}\right)<+\infty$, we find a solution

$$
\rho \in L^{\beta}([0, T] \times \Omega) \text { and } p \in L^{2}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{\infty}([0, T] \times \Omega)
$$

with $\sqrt{\rho} \in L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.
$\rightarrow$ In the proof, to gain compactness we use an Aubin-Lions type argument for $\rho^{\tau}$.

## What about more general problems?

$\rightarrow$ The corresponding 'porous medium example' follows similar arguments with some additional care, since the sequence $\left(\rho_{k}\right)_{k}$ in general fails to be fully supported on $\Omega$.

## What about more general problems?

$\rightarrow$ The corresponding 'porous medium example' follows similar arguments with some additional care, since the sequence $\left(\rho_{k}\right)_{k}$ in general fails to be fully supported on $\Omega$.
$\rightarrow$ Let

$$
S(\rho):= \begin{cases}\frac{\rho^{m}}{m-1}, & \text { for } \rho \in[0,1] \\ \frac{2 \rho^{m}}{m-1}-\frac{1}{m-1}, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

where $m>1$.

## What about more general problems?

$\rightarrow$ The corresponding 'porous medium example' follows similar arguments with some additional care, since the sequence $\left(\rho_{k}\right)_{k}$ in general fails to be fully supported on $\Omega$.
$\rightarrow$ Let

$$
S(\rho):= \begin{cases}\frac{\rho^{m}}{m-1}, & \text { for } \rho \in[0,1] \\ \frac{2 \rho^{m}}{m-1}-\frac{1}{m-1}, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

where $m>1$.
$\rightarrow$ Our main theorem for the associated entropy can be formulated as follows.

## Main theorem for the PM type model problem

Theorem (Kwon-M., 2021)
For $\rho_{0} \in \mathscr{P}(\Omega)$ such that $\mathcal{J}\left(\rho_{0}\right)<+\infty$, there exists $\rho \in L^{\beta}([0, T] \times \Omega)$ and $p \in L^{2}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{\infty}([0, T] \times \Omega)$ with $\rho^{m-\frac{1}{2}} \in L^{2}\left([0, T] ; H^{1}(\Omega)\right)$ such that $(\rho, p)$ is a weak solution of

$$
\begin{cases}\partial_{t} \rho-\Delta\left(\left[(m-1) \rho^{m}+1\right] \frac{p}{m}\right)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega  \tag{3}\\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega \\ \left(\nabla\left(\left[(m-1) \rho^{m}+1\right] \frac{p}{m}\right)+\nabla \Phi \rho\right) \cdot \mathbf{n}=0, & \text { in }[0, T] \times \partial \Omega\end{cases}
$$

in the sense of distribution. Furthermore, ( $\rho, p$ ) satisfies

$$
\begin{cases}p(t, x)=\frac{m}{m-1} & \text { a.e. in }\{0<\rho<1\} \\ p(t, x) \in\left[\frac{m}{m-1}, \frac{2 m}{m-1}\right] & \text { a.e. in }\{\rho=1\} \\ p(t, x)=\frac{2 m}{m-1} & \text { a.e. in }\{\rho>1\}\end{cases}
$$

In addition, if $\rho_{0} \in L^{\infty}(\Omega)$ and $\nabla \Phi \cdot \mathbf{n}>0$ on $\partial \Omega$, then $\rho \in L^{\infty}([0, T] \times \Omega)$ and $\rho^{m} \in L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.

## The 'fully' general problem

$\rightarrow$ Recall that if $S$ is differentiable, then we have

$$
\varphi(\rho)=\rho S^{\prime}(\rho)-S(\rho)+S(1)
$$

$\rightarrow$ Based on the observation and the derivation of $p$, we define the operator $L_{S}$ pointwisely for functions $(\rho, p):[0, T] \times \Omega \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
L_{S}(\rho, p)(t, x) & :=\left[\rho(t, x) S^{\prime}(\rho(t, x))-S(\rho(t, x))+S(1)\right] \mathbb{1}_{\{\rho \neq 1\}}(t, x) \\
& +p(t, x) \mathbb{1}_{\{\rho=1\}}(t, x)
\end{aligned}
$$

$\rightarrow$ Recall that for a.e. $(t, x) \in[0, T] \times \Omega$ the pressure variable $p:[0, T] \times \Omega \rightarrow \mathbb{R}$ satisfies a.e.

$$
\begin{cases}p(t, x)=S^{\prime}(1-) & \text { if } 0 \leq \rho(t, x)<1  \tag{P}\\ p(t, x) \in\left[S^{\prime}(1-), S^{\prime}(1+)\right] & \text { if } \rho(t, x)=1 \\ p(t, x)=S^{\prime}(1+) & \text { if } \rho(t, x)>1\end{cases}
$$

$\rightarrow$ We aim to find a solution to the PDE

$$
\begin{cases}\partial_{t} \rho-\Delta\left(L_{S}(\rho, p)\right)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega  \tag{G}\\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega \\ \left(\nabla\left(L_{S}(\rho, p)\right)+\nabla \Phi \rho\right) \cdot \mathbf{n}=0, & \text { in }\left[0_{5} T\right] \times \partial \Omega\end{cases}
$$

## The 'fully' general problem

$\rightarrow$ Recall that if $S$ is differentiable, then we have

$$
\varphi(\rho)=\rho S^{\prime}(\rho)-S(\rho)+S(1)
$$

$\rightarrow$ Based on the observation and the derivation of $p$, we define the operator $L_{S}$ pointwisely for functions $(\rho, p):[0, T] \times \Omega \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
L_{S}(\rho, p)(t, x) & :=\left[\rho(t, x) S^{\prime}(\rho(t, x))-S(\rho(t, x))+S(1)\right] \mathbb{1}_{\{\rho \neq 1\}}(t, x) \\
& +p(t, x) \mathbb{1}_{\{\rho=1\}}(t, x)
\end{aligned}
$$

$\rightarrow$ Recall that for a.e. $(t, x) \in[0, T] \times \Omega$ the pressure variable $p:[0, T] \times \Omega \rightarrow \mathbb{R}$ satisfies a.e.

$$
\begin{cases}p(t, x)=S^{\prime}(1-) & \text { if } 0 \leq \rho(t, x)<1  \tag{P}\\ p(t, x) \in\left[S^{\prime}(1-), S^{\prime}(1+)\right] & \text { if } \rho(t, x)=1 \\ p(t, x)=S^{\prime}(1+) & \text { if } \rho(t, x)>1\end{cases}
$$

$\rightarrow$ We aim to find a solution to the PDE

$$
\begin{cases}\partial_{t} \rho-\Delta\left(L_{S}(\rho, p)\right)-\nabla \cdot(\nabla \Phi \rho)=0, & \text { in }(0, T) \times \Omega  \tag{G}\\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega \\ \left(\nabla\left(L_{S}(\rho, p)\right)+\nabla \Phi \rho\right) \cdot \mathbf{n}=0, & \text { in }\left[0_{5} T\right] \times \partial \Omega\end{cases}
$$

$\rightarrow$ Assume that $S \sim \rho^{m}$ in $(0,1)$ and $S \sim \rho^{r}$ in $(1,+\infty)$, for some $m \geq 1, r \geq 1$. Set $\beta \geq 1$ as before, i.e.

$$
\beta:= \begin{cases}(2 r-1) \frac{d}{d-2} & \text { if } d \geq 3 \\ {[1, \infty)} & \text { if } d=2 \\ +\infty & \text { if } d=1\end{cases}
$$

$\rightarrow$ Assume that $S \sim \rho^{m}$ in $(0,1)$ and $S \sim \rho^{r}$ in $(1,+\infty)$, for some $m \geq 1, r \geq 1$. Set $\beta \geq 1$ as before, i.e.

$$
\beta:= \begin{cases}(2 r-1) \frac{d}{d-2} & \text { if } d \geq 3, \\ {[1, \infty)} & \text { if } d=2, \\ +\infty & \text { if } d=1\end{cases}
$$

$\rightarrow$ Based on the 'regularization of $S$ ' and the Sobolev embedding theorem, we obtain the uniform bound $L^{\beta}([0, T] \times \Omega)$ for $\left(\rho^{\tau}\right)_{\tau>0}$.
$\rightarrow$ Assume that $S \sim \rho^{m}$ in $(0,1)$ and $S \sim \rho^{r}$ in $(1,+\infty)$, for some $m \geq 1, r \geq 1$. Set $\beta \geq 1$ as before, i.e.

$$
\beta:= \begin{cases}(2 r-1) \frac{d}{d-2} & \text { if } d \geq 3 \\ {[1, \infty)} & \text { if } d=2, \\ +\infty & \text { if } d=1\end{cases}
$$

$\rightarrow$ Based on the 'regularization of $S$ ' and the Sobolev embedding theorem, we obtain the uniform bound $L^{\beta}([0, T] \times \Omega)$ for $\left(\rho^{\tau}\right)_{\tau>0}$.
$\rightarrow$ Our main theorem reads as
Theorem (Kwon-M., 2021)
Suppose that the above growth conditions are fulfilled and

$$
m<r+\frac{\beta}{2}
$$

holds true. For $\rho_{0} \in \mathscr{P}(\Omega)$ such that $\mathcal{E}\left(\rho_{0}\right)<+\infty$, there exists $\rho \in L^{\beta}([0, T] \times \Omega)$, $\rho^{m-\frac{1}{2}} \in L^{2}\left([0, T] ; H^{1}(\Omega)\right)$ and $p \in L^{2}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{\infty}([0, T] \times \Omega)$ such that $(\rho, p)$ is a solution of $(\mathrm{G})-(\mathrm{P})$ in the sense of distributions.

## The main idea of the proof ( $m=1$, the less involved case)

$\rightarrow$ The hypothesis $m<r+\frac{\beta}{2}$ is always true.

## The main idea of the proof ( $m=1$, the less involved case)

$\rightarrow$ The hypothesis $m<r+\frac{\beta}{2}$ is always true.
$\rightarrow$ We define the auxiliary functions $S_{a}$ and $S_{b}:[0,+\infty) \rightarrow \mathbb{R}$ by

$$
S_{a}(\rho):= \begin{cases}S^{\prime}(1-) \rho \log \rho, & \text { for } \rho \in[0,1], \\ S^{\prime}(1+) \rho \log \rho, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

and

$$
S_{b}(\rho):=S(\rho)-S_{a}(\rho) .
$$

## The main idea of the proof ( $m=1$, the less involved case)

$\rightarrow$ The hypothesis $m<r+\frac{\beta}{2}$ is always true.
$\rightarrow$ We define the auxiliary functions $S_{a}$ and $S_{b}:[0,+\infty) \rightarrow \mathbb{R}$ by

$$
S_{a}(\rho):= \begin{cases}S^{\prime}(1-) \rho \log \rho, & \text { for } \rho \in[0,1], \\ S^{\prime}(1+) \rho \log \rho, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

and

$$
S_{b}(\rho):=S(\rho)-S_{a}(\rho)
$$

$\rightarrow$ It turns out that $S_{b}$ is differentiable on $(0,+\infty)$ !

## The main idea of the proof ( $m=1$, the less involved case)

$\rightarrow$ The hypothesis $m<r+\frac{\beta}{2}$ is always true.
$\rightarrow$ We define the auxiliary functions $S_{a}$ and $S_{b}:[0,+\infty) \rightarrow \mathbb{R}$ by

$$
S_{a}(\rho):= \begin{cases}S^{\prime}(1-) \rho \log \rho, & \text { for } \rho \in[0,1], \\ S^{\prime}(1+) \rho \log \rho, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

and

$$
S_{b}(\rho):=S(\rho)-S_{a}(\rho) .
$$

$\rightarrow$ It turns out that $S_{b}$ is differentiable on $(0,+\infty)$ !
$\rightarrow$ We obtain that $\rho_{k}>0$ a.e. and the optimality condition,

$$
p_{k}\left(1+\log \rho_{k}\right)+S_{b}^{\prime}\left(\rho_{k}\right)+\frac{\phi_{k}}{\tau}+\Phi=C \text { a.e. }
$$

## The main idea of the proof $(m>1)$

$\rightarrow$ The proof is technical.
$\rightarrow$ As the support of $\rho_{k}$ may not be $\Omega$, we cannot use the same construction as in the case of $m=1$.

## The main idea of the proof $(m>1)$

$\rightarrow$ The proof is technical.
$\rightarrow$ As the support of $\rho_{k}$ may not be $\Omega$, we cannot use the same construction as in the case of $m=1$.
$\rightarrow$ Instead, we consider

$$
S_{a}(\rho):= \begin{cases}\frac{\rho^{m}}{m-1}, & \text { for } \rho \in[0,1] \\ \frac{2 \rho^{m}}{m-1}-\frac{1}{m-1}, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

## The main idea of the proof $(m>1)$

$\rightarrow$ The proof is technical.
$\rightarrow$ As the support of $\rho_{k}$ may not be $\Omega$, we cannot use the same construction as in the case of $m=1$.
$\rightarrow$ Instead, we consider

$$
S_{a}(\rho):= \begin{cases}\frac{\rho^{m}}{m-1}, & \text { for } \rho \in[0,1] \\ \frac{2 \rho^{m}}{m-1}-\frac{1}{m-1}, & \text { for } \rho \in(1,+\infty)\end{cases}
$$

Lemma
For all $k \in\{1, \ldots, N\}$, there exists $C \in \mathbb{R}$ such that

$$
\rho_{k}^{m-1} p_{k}=\left(C-\frac{\phi_{k}}{\tau}-\Phi\right)_{+} \quad \text { a.e. }
$$

In particular, $p_{k}$ and $\rho_{k}^{m-1}$ are Lipschitz continuous.

## The main idea of the proof $(m>1)$ (Continued)

$\rightarrow$ In order to have the strong convergence, we need spacial Sobolev estimates.

## The main idea of the proof $(m>1)$ (Continued)

$\rightarrow$ In order to have the strong convergence, we need spacial Sobolev estimates.

Lemma
(1) If $r \geq m$, then $\left(\left(\rho^{\tau}\right)^{m-\frac{1}{2}}\right)_{\tau>0}$ is uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.
(2) If $r<m<r+\frac{\beta}{2}$, then $\left(\left(\rho^{\tau}\right)^{m-\frac{1}{2}}\right)_{\tau>0}$ is uniformly bounded in $L^{q}\left([0, T] ; W^{1, q}(\Omega)\right)$ for some $q \in(1,2)$.

## The main idea of the proof $(m>1)$ (Continued)

$\rightarrow$ In order to have the strong convergence, we need spacial Sobolev estimates.

Lemma
(1) If $r \geq m$, then $\left(\left(\rho^{\tau}\right)^{m-\frac{1}{2}}\right)_{\tau>0}$ is uniformly bounded in $L^{2}\left([0, T] ; H^{1}(\Omega)\right)$.
(2) If $r<m<r+\frac{\beta}{2}$, then $\left(\left(\rho^{\tau}\right)^{m-\frac{1}{2}}\right)_{\tau>0}$ is uniformly bounded in $L^{q}\left([0, T] ; W^{1, q}(\Omega)\right)$ for some $q \in(1,2)$.
$\rightarrow$ Together with the previous estimates, these are enough to pass to the limit, using again a refined version of the Aubin-Lions lemma.

## Representation as continuity equations

Under suitable additional assumptions, our main equation (G) also reads as

$$
\begin{cases}\partial_{t} \rho-\nabla \cdot\left(\rho \nabla\left(S^{\prime}(\rho) \mathbb{1}_{\{\rho \neq 1\}}+p \mathbb{1}_{\{\rho=1\}}\right)\right)-\nabla \cdot(\rho \nabla \Phi)=0, & \text { in }(0, T) \times \Omega,  \tag{4}\\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega, \\ \rho\left[\nabla\left(S^{\prime}(\rho) \mathbb{1}_{\{\rho \neq 1\}}+p \mathbb{1}_{\{\rho=1\}}\right)+\nabla \Phi\right] \cdot \mathbf{n}=0, & \text { in }[0, T] \times \partial \Omega .\end{cases}
$$

## Representation as continuity equations

Under suitable additional assumptions, our main equation (G) also reads as

$$
\begin{cases}\partial_{t} \rho-\nabla \cdot\left(\rho \nabla\left(S^{\prime}(\rho) \mathbb{1}_{\{\rho \neq 1\}}+p \mathbb{1}_{\{\rho=1\}}\right)\right)-\nabla \cdot(\rho \nabla \Phi)=0, & \text { in }(0, T) \times \Omega,  \tag{4}\\ \rho(0, \cdot)=\rho_{0}, & \text { in } \Omega, \\ \rho\left[\nabla\left(S^{\prime}(\rho) \mathbb{1}_{\{\rho \neq 1\}}+p \mathbb{1}_{\{\rho=1\}}\right)+\nabla \Phi\right] \cdot \mathbf{n}=0, & \text { in }[0, T] \times \partial \Omega .\end{cases}
$$

Corollary
If

$$
m<r+\frac{1}{2}, \beta>2 \text { and } m<\frac{\beta}{2}+\frac{1}{2},
$$

then $(\rho, p)$ is a weak solution of (4) in the sense of distribution.
We underline that additional assumptions are needed to guarantee Sobolev estimates on $S^{\prime}(\rho)$.

## The emergence of the region $\{\rho=1\}$

The phenomenon observed in [Bántay-Jánosi, 1992] (they use Dirichlet boundary conditions):
$\rightarrow$


Figure: Time evolution of $\rho$


Figure: The growth of the critical region on a log-log scale

## Confirming such a phenomenon

Our results support such phenomena by the simple reasoning below.
Lemma
If $t \in(0, T)$ is a Lebesgue point both for $t \mapsto \rho_{t}$ and $t \mapsto p_{t}$ with
$\mathscr{L}^{1}\left(\left\{\rho_{t}<1\right\}\right)>0$ and $\mathscr{L}^{1}\left(\left\{\rho_{t}>1\right\}\right)>0$ then $\mathscr{L}^{1}\left(\left\{\rho_{t}=1\right\}\right)>0$.
$\rightarrow$ The proof is based on $p(t, \cdot) \in C^{0, \frac{1}{2}}(\Omega)$ (coming from the $H^{1}$ spacial regularity in 1D) for all Lebesgue point $t$ for $t \mapsto \rho_{t}$ and $t \mapsto p_{t}$.

## Confirming such a phenomenon

Our results support such phenomena by the simple reasoning below.
Lemma
If $t \in(0, T)$ is a Lebesgue point both for $t \mapsto \rho_{t}$ and $t \mapsto p_{t}$ with
$\mathscr{L}^{1}\left(\left\{\rho_{t}<1\right\}\right)>0$ and $\mathscr{L}^{1}\left(\left\{\rho_{t}>1\right\}\right)>0$ then $\mathscr{L}^{1}\left(\left\{\rho_{t}=1\right\}\right)>0$.
$\rightarrow$ The proof is based on $p(t, \cdot) \in C^{0, \frac{1}{2}}(\Omega)$ (coming from the $H^{1}$ spacial regularity in 1D) for all Lebesgue point $t$ for $t \mapsto \rho_{t}$ and $t \mapsto p_{t}$.
$\rightarrow p=S^{\prime}(1-)$ a.e. on $\{\rho<1\}, p=S^{\prime}(1+)$ a.e. on $\{\rho>1\}$ and $S^{\prime}(1-)<S^{\prime}(1+)$.
$\rightarrow$ The fact that $\mathscr{L}^{d}\left(\left\{\rho_{k}=1\right\}\right)>0$, is supported by our numerical experiments as well.
$\rightarrow$ The fact that $\mathscr{L}^{d}\left(\left\{\rho_{k}=1\right\}\right)>0$, is supported by our numerical experiments as well.
$\rightarrow$ We computed one minimizing movement step in 1D, for $\Phi(x)=2 x, \Omega=[0,1]$ and $S$ in the logarithmic entropy.

$$
\rho_{k}:=\operatorname{argmin}_{\rho \in \mathscr{P}(\Omega)}\left\{\int_{\Omega} S(\rho(x)) \mathrm{d} x+\int_{\Omega} 2 x \mathrm{~d} \rho(x)+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \rho_{k-1}\right)\right\},
$$

$$
\begin{cases}p_{k}(x)=1 & \text { a.e. in }\left\{0<\rho_{k}(x)<1\right\}, \\ p_{k}(x) \in[1,2] & \text { a.e. in }\left\{\rho_{k}(x)=1\right\}, \\ p_{k}(x)=2 & \text { a.e. in }\left\{\rho_{k}(x)>1\right\} .\end{cases}
$$

$\rightarrow$



Figure: $\rho_{0}$
Figure: $\rho_{1}$

## Uniqueness of solutions

$\rightarrow$ By an involved analysis, carefully combining ideas from [Vázquez, OSP, 2007] and [Di Marino-M., M3AS, 2016] we obtain an $L^{1}$ contraction result.

## Uniqueness of solutions

$\rightarrow$ By an involved analysis, carefully combining ideas from [Vázquez, OSP, 2007] and [Di Marino-M., M3AS, 2016] we obtain an $L^{1}$ contraction result.

## Theorem

Let $\left(\rho^{1}, p^{1}\right),\left(\rho^{2}, p^{2}\right)$ be solutions to $(\mathrm{G})-(\mathrm{P})$ with initial conditions $\rho_{0}^{1}, \rho_{0}^{2} \in \mathscr{P}(\Omega)$ such that $\mathcal{J}\left(\rho_{0}^{i}\right)<+\infty, i=1,2$. Suppose that $L_{S}\left(\rho^{i}, p^{i}\right) \in L^{2}([0, T] \times \Omega), i=1,2$. Then we have

$$
\left\|\rho_{t}^{1}-\rho_{t}^{2}\right\|_{L^{1}(\Omega)} \leq\left\|\rho_{0}^{1}-\rho_{0}^{2}\right\|_{L^{1}(\Omega)}, \mathscr{L}^{1}-\text { a.e. } t \in[0, T] .
$$

$\rightarrow$ The assumption $L_{S}(\rho, p) \in L^{2}([0, T] \times \Omega)$ seems natural in the context of the PME equation.
$\rightarrow$ This is not needed if $\rho_{0}^{i} \in L^{\infty}(\Omega)$.
$\rightarrow$ Because of the $L^{\beta}([0, T] \times \Omega)$ estimates on $\rho^{i}$, this assumption is fulfilled already if $\beta \geq 2 r$.

## Uniqueness of solutions

$\rightarrow$ By an involved analysis, carefully combining ideas from [Vázquez, OSP, 2007] and [Di Marino-M., M3AS, 2016] we obtain an $L^{1}$ contraction result.

## Theorem

Let $\left(\rho^{1}, p^{1}\right),\left(\rho^{2}, p^{2}\right)$ be solutions to $(\mathrm{G})-(\mathrm{P})$ with initial conditions $\rho_{0}^{1}, \rho_{0}^{2} \in \mathscr{P}(\Omega)$ such that $\mathcal{J}\left(\rho_{0}^{i}\right)<+\infty, i=1,2$. Suppose that $L_{S}\left(\rho^{i}, p^{i}\right) \in L^{2}([0, T] \times \Omega), i=1,2$. Then we have

$$
\left\|\rho_{t}^{1}-\rho_{t}^{2}\right\|_{L^{1}(\Omega)} \leq\left\|\rho_{0}^{1}-\rho_{0}^{2}\right\|_{L^{1}(\Omega)}, \mathscr{L}^{1}-\text { a.e. } t \in[0, T] .
$$

$\rightarrow$ The assumption $L_{S}(\rho, p) \in L^{2}([0, T] \times \Omega)$ seems natural in the context of the PME equation.
$\rightarrow$ This is not needed if $\rho_{0}^{i} \in L^{\infty}(\Omega)$.
$\rightarrow$ Because of the $L^{\beta}([0, T] \times \Omega)$ estimates on $\rho^{i}$, this assumption is fulfilled already if $\beta \geq 2 r$.
Open question: can one obtain $W_{2}\left(\rho_{t}^{1}, \rho_{t}^{2}\right) \leq C(t) W_{2}\left(\rho_{0}^{1}, \rho_{0}^{2}\right)$ ? (cf. [Bolley-Carrillo, CPDE, 2014]).

## Singular limits

$\rightarrow$ For $\varepsilon_{1}, \varepsilon_{2}>0$, consider $\mathcal{E}_{\varepsilon_{1}, \varepsilon_{2}}: \mathscr{P}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$, defined as

$$
\mathcal{E}_{\varepsilon_{1}, \varepsilon_{2}}(\rho):= \begin{cases}\int_{\Omega} S_{\varepsilon_{1}, \varepsilon_{2}}(\rho(x)) \mathrm{d} x, & \text { if } S_{\varepsilon_{1}, \varepsilon_{2}}(\rho) \in L^{1}(\Omega), \\ +\infty, & \text { otherwise },\end{cases}
$$

where $S_{\varepsilon_{1}, \varepsilon_{2}}: \mathbb{R} \rightarrow \mathbb{R}$ is convex and has the form

$$
S_{\varepsilon_{1}, \varepsilon_{2}}(s)= \begin{cases}\varepsilon_{1} S_{1}(s), & \text { if } s \in(0,1) \\ \varepsilon_{2} S_{2}(s), & \text { if } s \geq 1, \\ +\infty, & \text { otherwise }\end{cases}
$$

## Singular limits

$\rightarrow$ For $\varepsilon_{1}, \varepsilon_{2}>0$, consider $\mathcal{E}_{\varepsilon_{1}, \varepsilon_{2}}: \mathscr{P}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$, defined as

$$
\mathcal{E}_{\varepsilon_{1}, \varepsilon_{2}}(\rho):= \begin{cases}\int_{\Omega} S_{\varepsilon_{1}, \varepsilon_{2}}(\rho(x)) \mathrm{d} x, & \text { if } S_{\varepsilon_{1}, \varepsilon_{2}}(\rho) \in L^{1}(\Omega), \\ +\infty, & \text { otherwise },\end{cases}
$$

where $S_{\varepsilon_{1}, \varepsilon_{2}}: \mathbb{R} \rightarrow \mathbb{R}$ is convex and has the form

$$
S_{\varepsilon_{1}, \varepsilon_{2}}(s)= \begin{cases}\varepsilon_{1} S_{1}(s), & \text { if } s \in(0,1), \\ \varepsilon_{2} S_{2}(s), & \text { if } s \geq 1, \\ +\infty, & \text { otherwise }\end{cases}
$$

$\rightarrow$ It turns out that we have uniform estimates w.r.t $\varepsilon_{1}, \varepsilon_{2}>0$.
$\rightarrow$ One can take $\varepsilon_{1} \downarrow 0$ (and $\varepsilon_{2}$ fixed) to obtain the well-posedness of the original sandpile model.
$\rightarrow$ One can take $\varepsilon_{2} \rightarrow+\infty$ (and $\varepsilon_{1}$ fixed) to obtain well-posedness results for (parabolic) problems under density constraints $\rho \leq 1$.

## Open question \#1

$\rightarrow$ Can we obtain the higher regularity of $\rho$ and $p$ ?
$\rightarrow$ More properties of the critical region $\{\rho=1\}$ ?
$\rightarrow$ Can we obtain the regularity of the interface $\partial\{\rho=1\}$ ?

## Free boundary approach



Figure: Two phases


Figure: Three phases

## Free boundary approach

$\rightarrow$ Formally, we can write the three phase free boundary problem

$$
\Delta p=-\Delta \Phi, \text { in }\{\rho=1\}, \quad p=\mathcal{S}^{\prime}(1-) \text { in }\{\rho<1\} \text { and } p=S^{\prime}(1+) \text { in }\{\rho>1\},
$$

## Free boundary approach

$\rightarrow$ Formally, we can write the three phase free boundary problem

$$
\Delta p=-\Delta \Phi, \text { in }\{\rho=1\}, \quad p=\mathcal{S}^{\prime}(1-) \text { in }\{\rho<1\} \text { and } p=S^{\prime}(1+) \text { in }\{\rho>1\},
$$

or more in details for our first example as

$$
\begin{cases}\partial_{t} \rho=\Delta \rho+\nabla \cdot(\nabla \Phi \rho) & \text { in }\{p \rho<1\}, \\ -\Delta p=\Delta \Phi, & \text { in }\{1<p \rho<2\}, \\ \partial_{t} \rho=2 \Delta \rho+\nabla \cdot(\nabla \Phi \rho) & \text { in }\{p \rho>2\},\end{cases}
$$

with boundary conditions

$$
\left\{\begin{array}{l}
\left|D(p \rho)^{1+}\right|-\left|D(p \rho)^{1-}\right|=0 \text { on }\{p \rho=1\} . \\
\left|D(p \rho)^{2+}\right|-\left|D(p \rho)^{2-}\right|=0 \text { on }\{p \rho=2\}
\end{array}\right.
$$

and

$$
\begin{cases}p=1 & \text { in }\{p \rho<1\}, \\ \rho=1, & \text { in }\{1<p \rho<2\}, \\ p=2 & \text { in }\{p \rho>2\},\end{cases}
$$

## Open questions \#2

Recall the growth of $S: S \sim \rho^{m}$ in $(0,1)$ and $S \sim \rho^{r}$ in $(1,+\infty)$.
$\rightarrow$ What happens if $m \gg r$ ?
$\rightarrow$ Can we obtain Sobolev estimates?
$\rightarrow$ If not, can we observe some singular phenomena as below?


Figure: $t=0$


Figure: $t=t^{*}>0$

## Thank you for your attention!

