Math 571 Qualifying Exam

January 2018

Each problem is worth ten points, for a total of sixty possible points.

- 1. Let X and Y be topological spaces and let $f, g: X \to Y$ be two continuous functions. Suppose that Y is Hausdorff. Show that the subset of X consisting of those points $x \in X$ where f(x) = g(x) is closed.
- 2. Let X and Y be (nonempty) connected topological spaces. Show that $X \times Y$ is connected.
- 3. A collection of subsets $\{Z_{\alpha}\}_{\alpha \in A}$ of a topological space X is said to have the *finite intersection property* if every finite subcollection $\{Z_{\alpha_1}, \ldots, Z_{\alpha_n}\}$ of $\{Z_{\alpha}\}_{\alpha \in A}$ has nonempty intersection. Show that a topological space X is compact if and only if, for each collection of *closed* subsets $\{Z_{\alpha}\}_{\alpha \in A}$ of X having the finite intersection property, the total intersection $\bigcap_{\alpha \in A} Z_{\alpha}$ is nonempty.
- 4. Let X be a locally compact Hausdorff space and let $Z \subset X$ be a subset with the property that $Z \cap K$ is closed for every compact $K \subset X$. Prove that Z is closed.
- 5. Let X be the quotient of the square $[0, 1] \times [0, 1]$ by the equivalence relation generated by $[s, 0] \sim [s, 1]$ and $[0, t] \sim [1, 1 t]$ for all $s, t \in [0, 1]$. Show that X is path connected and calculate $\pi_1(X)$.
- 6. Let $X = S^1$ be the circle and let $p: Y \to X$ be a covering space. Show that if Y is path connected but not simply connected then $\pi_1(Y) \cong \mathbb{Z}$.