Each problem is worth ten points, for a total of sixty possible points.

1. Let $X$ be a set and let $\mathcal{P}(X)$ denote the power set of $X$ (the set of all subsets of $X$ ). Suppose given a function $f: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ such that
(a) $f(\emptyset)=\emptyset$,
(b) for any $Y$ in $\mathcal{P}(X), Y \subseteq f(Y)$,
(c) for any $Y$ and $Z$ in $\mathcal{P}(X), f(Y \cup Z)=f(Y) \cup f(Z)$, and
(d) $f \circ f=f$.

Show that $f$ determines a topology on $X$ in which the closed subsets are precisely those subsets $Z \subseteq X$ such that $f(Z)=Z$, and conversely that if $X$ is a topological space then the assignment $f(Y)=\bar{Y}$ determines a function $f: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ satisfying these properties.
2. Let $\left\{X_{\alpha}\right\}_{\alpha \in A}$ be a family of topological spaces $X_{\alpha}$, let $X=\prod_{\alpha \in A} X_{\alpha}$ be the cartesian product of the $X_{\alpha}$, equipped with the product topology, and let $p_{\alpha}: X \rightarrow X_{\alpha}$ denote the projection map. Suppose given points $x_{\alpha} \in X_{\alpha}$ for all $\alpha \in A$, and let $Y \subseteq X$ denote the subspace of $X$ consisting of those points $x \in X$ such that $p_{\alpha}(x)=x_{\alpha}$ for all but finitely many $\alpha \in A$. Show that $Y$ is a dense subset of $X$ (i.e. the closure of $Y$ is equal to $X$ ).
3. An embedding is a continuous injection $f: X \rightarrow Y$ which is a homeomorphism onto its image; in other words, writing $f(X) \subseteq Y$ for the subspace of $Y$ given by the image of $f, f$ is an embedding if $X \rightarrow f(X)$ is a homeomorphism. Show that, if $f: X \rightarrow Y$ is a continuous injection of topological spaces such that $X$ is compact and $Y$ is Hausdorff, then $f$ is an embedding.
4. Let $q: X \rightarrow Y$ be a continuous surjection. Show that $q$ is a quotient map if, for any topological space $Z$ and any function $f: Y \rightarrow Z, f$ is continuous if and only if $f \circ q: X \rightarrow Z$ is continuous. Show additionally that if $q$ is either open or closed then $q$ is a quotient map.
5. Let $p: Y \rightarrow X$ be a covering space such that $Y$ is simply connected and let $x_{0} \in X$. Show that there exists a bijection of sets $\pi_{1}\left(X, x_{0}\right) \cong p^{-1}\left(x_{0}\right)$.
6. Let $n$ be a positive integer and let $s_{1}, \ldots, s_{n} \in S^{2}$ be a sequence of $n$ distinct points on the 2 -sphere $S^{2}$. Let $X=S^{2}-\left\{s_{1}, \ldots, s_{n}\right\}$ be the subspace of $S^{2}$ obtained as the complement of $\left\{s_{1}, \ldots, s_{n}\right\} \subset S^{2}$. Calculate $\pi_{1}(X, x)$ for a choice of basepoint $x \in X$.

