Math 571 Qualifying Exam

Each problem is worth ten points, for a total of sixty possible points.

- 1. Let \mathbb{R} denote the real line (equipped with its usual topology) and let $X = \prod_{n=0}^{\infty} \mathbb{R}$ be the countable infinite product of copies of \mathbb{R} , equipped with the box topology (recall that a basis for this topology is given by the collection of subsets of the form $\prod U_n$, for all sequences of open sets $U_n \subset \mathbb{R}$). Show that the diagonal function $\delta : \mathbb{R} \to X$, which sends $t \in \mathbb{R}$ to the constant sequence $\delta(t) = (t, t, t, \ldots) \in X$, is not continuous.
- 2. Let X be a locally compact topological space and let X^+ denote its onepoint compactification. Show that X^+ is compact. Is X^+ necessarily connected?
- 3. Let $q: Y \to X$ be a continuous surjective map of topological spaces. Show that if Y is compact and X is Hausdorff, then q is a quotient map.
- 4. Let X be a path connected topological space, let I = [0, 1] denote the unit interval, equipped with its standard topology, and suppose given two continuous functions $f : I \to X$ and $g : I \to X$. Show that f and g are homotopic.
- 5. Let X be a simply connected topological space and let $p: Y \to X$ be a covering space such that Y is path connected. Show that p is one-to-one and onto.
- 6. Let n be a positive integer and let $s_1, \ldots, s_n \in S^2$ be a sequence of n distinct points on the 2-sphere S^2 . Let $X = S^2 \{s_1, \ldots, s_n\}$ be the subspace of S^2 obtained as the complement of $\{s_1, \ldots, s_n\} \subset S^2$. Calculate $\pi_1(X, x)$ for a choice of basepoint $x \in X$.