MA 571 Qualifying Exam. August 2015. Professor R. Kaufmann

INSTRUCTIONS

There are 8 problems. Each problem is worth 10 points

Unless otherwise stated, you may use anything in Munkres's book—but be careful to make it clear what fact you are using.

When you use a set theoretic fact that isn't obvious, be careful to give a clear explanation.

Problems

1. Let X_{α} be a family of topological spaces and $\prod_{\alpha} X_{\alpha}$ their product (with product topology). For each α , let A_{α} be a subset of X_{α} and $\overline{A_{\alpha}}$ its closure in X_{α} . Consider the subsets $\prod_{\alpha} \overline{A_{\alpha}}$ and $\prod_{\alpha} A_{\alpha}$ of $\prod_{\alpha} X_{\alpha}$. Let $\overline{\prod_{\alpha} A_{\alpha}}$ be the the closure of the second set in $\prod_{\alpha} X_{\alpha}$.

Prove that

$$\overline{\prod_{\alpha} A_{\alpha}} = \prod_{\alpha} \overline{A_{\alpha}}.$$

- 2. Let X be a topological space and let $f, g : X \to [0, 1]$ be continuous functions. Suppose that X is connected and f is onto. **Prove** that there must be a point $x \in X$ with f(x) = g(x).
- 3. Consider the subspace of \mathbb{R}^2 consisting of two lines $S = \{(x, 0) : x \in \mathbb{R}\} \cup \{(x, 1) : x \in \mathbb{R}\} \subset \mathbb{R}^2$.
 - (a) **Prove** that S is a locally compact Hausdorff space.
 - (b) **Prove** that the one point compactification \overline{S} of S is connected.

For part (b), you may assume that part (a) holds.

- 4. Recall that $g: X \to Y$ is called a proper map if $g^{-1}(C)$ is compact whenever $C \subset Y$ is compact. Show that if a map $f: X \to Y$ is closed and $f^{-1}(y)$ is compact for all $y \in Y$, then f is proper.
- 5. Let X be a locally compact Hausdorff space, let Y be any space, and let the function space $\mathcal{C}(X, Y)$ have the compact-open topology.

Prove that the map

$$e: X \times \mathcal{C}(X, Y) \to Y$$

defined by the equation

$$e(x,f) = f(x)$$

is continuous.

- 6. Let $p: E \to B$ be a covering map. Let A be a connected space and let $a \in A$. Prove that if two continuous functions $\alpha, \beta: A \to E$ have the property that $\alpha(a) = \beta(a)$ and $p \circ \alpha = p \circ \beta$ then $\alpha = \beta$.
- 7. Consider the circle S^1 given as the quotient of the interval $[0,1] \subset \mathbb{R}$ by the equivalence relation $0 \sim 1$ and the Möbius band M, given as the quotient of the subspace $Sq = [0,1] \times [-1,1] \subset \mathbb{R}^2$ modulo the equivalence relation $(0,y) \sim (1,-y)$.

Show that M is homotopy equivalent to S^1 as follows:

- (a) Show that the imbedding $i : [0,1] \to Sq, x \mapsto (x,0)$ induces an imbedding $\overline{i} : S^1 \to M$.
- (b) Let I = i([0, 1]) be the image of i and $S = \overline{i}(S^1)$ the image of \overline{i} . Show that the retraction $r: Sq \to I, (x, y) \mapsto (x, 0)$ induces a retraction $\overline{r}: M \to S$.
- (c) Give a deformation retraction $\overline{H} : Sq \times [0,1] \to Sq$ from Sq onto I, with H(s,1) = r(s), which descends to a deformation retraction $\overline{H} : M \times [0,1] \to M$ from M to S with $\overline{H}(m,1) = \overline{r}(m)$.
- (d) Conclude the homotopy equivalence.

(Be careful to state which properties of what map you are using in your proof and that you prove all of the required properties.)

- 8. Let F be the quotient space defined by pasting according to the two word labelling scheme $abcae^{-1}d^{-1}$ bcde.
 - (a) Compute $H_1(F)$.
 - (b) Is F a surface? If so, which one is it according to the classification theorem? (Justify your answers.)
 - (c) Choose a point x_0 on F and compute $\pi_1(F, x_0)$.

(You may, but do not have to, use the results of Problem 7).