MA 571 Qualifying Exam. January 2005.

Each problem is worth 14 points and you get two points for free.

- Let X be a topological space.
 Let A ⊂ X be connected.
 Prove Ā is connected.
- Let X₁, X₂,... be topological spaces.
 Suppose that ∏[∞]_{n=1} X_n is locally connected.
 Prove that all but finitely many X_n are connected.
- 3. Let X be a compact Hausdorff space. Let $f: X \to Y$ be a continuous **closed** surjection. **Prove** that Y is Hausdorff.
- 4. **Definition.** If W is a space with base point w_0 and Z is a space with base point z_0 , a map $f: W \to Z$ is said to be *based* if $f(w_0) = z_0$, and a homotopy $H: W \times I \to Z$ is said to be *based* if $H(w_0, t) = z_0$ for all t.

Let X be a space with basepoint x_0 and let $u_0 = (1,0)$ be the base point of S^1 .

Prove that there is a 1-1 correspondence between $\pi_1(X, x_0)$ and the based homotopy classes of based continuous maps $S^1 \to X$.

5. Let B be a Hausdorff space.

Let $p: E \to B$ be a covering map.

Prove that E is Hausdorff.

- 6. Let p: E → B be a covering map.
 Let e₀ ∈ E and let b₀ = p(e₀).
 Prove that p_{*} : π₁(E, e₀) → π₁(B, b₀) is 1-1.
- 7. **Prove** that every continuous map from S^2 to S^1 is homotopic to a constant map.