QUALIFYING EXAMINATION JANUARY 2003 MATH 571 - Prof. Gottlieb

- 1. Let $f: X \to Y$ be a continuous map. Given an open neighborhood V of a point $y \in Y$, we say that $f^{-1}(V)$ is a *tubular neighborhood* of the *fibre* $f^{-1}(y)$. We say f is *tubular* if for any open $U \subset X$ containing a fibre, there is a tubular neighborhood of that fibre contained in U. That is $f^{-1}(y) \subset f^{-1}(V) \subset U$.
 - a) Prove that f is tubular if and only if f is a closed map.
 - b) Show that f tubular implies that f is a quotient map.
 - c) Give an example of a quotient map which is not tubular.
 - d) Show that the Projection $\pi: B \times F \to B$ is a closed map if F is compact.
- 2. a) State the Tietze extension theorem.
 - b) Let $f: X \to \mathbb{R}^3$ be a map where X is compact and connected. Let $\pi : \mathbb{R}^3 \to \mathbb{R}$ be the projection onto the x-axis and let $p: f(X) \to \pi(f(X))$ be the projection π restricted to f(X) mapped onto its image. Then show p extends to a map $p': \mathbb{R}^3 \to \pi(f(X))$.
- 3. Show that a metric space is separable if and only if it has a countable basis.
- 4. Prove that the unit disk D^2 does not retract onto its boundary circle S^1 .
- 5. Show that the figure eight space, ∞ , is homotopy equivalent to the theta space, θ . (Hint: One way to show this, they are both homotopy equivalent to a third space.)
- 6. State the Unique Path Lifting Property for covering spaces and explain how it leads to the Unique Homotopy Lifting Property for covering spaces.