Qualifying Examination January 1999 MATH 571 - Prof. Gottlieb

Each problem is worth **20 points**.

- 1. Let \mathbb{Q} be the rational numbers with the order topology.
 - a) Show that \mathbb{Q} is not discrete.
 - b) Show that every connected component of \mathbb{Q} is a point.
- 2. Let $f: X \to Y$ be a continuous map and let $A \subset X$ be a subset.
 - a) Is $f(\overline{A}) \subset f(\overline{A})$? Give a proof or counterexample.
 - b) Is $f(\overline{A}) \subset f(\overline{A})$? Give a proof or counterexample.
- 3. a) Define the notion of homotopy equivalence of spaces.
 - b) Show that homotopy equivalence is an equivalence relation on spaces.
- 4. Show the countable product I^w is a compact metric space by defining a metric. Here I is [0, 1].
- 5. A proper map is a continuous map $f : X \to Y$ so that f^{-1} (compact set) is compact in X. Assume X and Y are Hausdorff.
 - a) Show f is proper if f is closed and every fibre $f^{-1}(y)$ is compact.
 - b) Give an example of a map which has all its fibres compact and yet is not proper.
 - c) What condition on $\pi_1(X)$ is necessary and sufficient so that the universal covering space map $p: \tilde{X} \to X$ is proper?