- 1. Let X_{α} be an infinite family of topological spaces.
 - (a) (6 points) Define the product topology on

$$\prod_{\alpha} X_{\alpha}$$

(b) (8 points) For each α , let A_{α} be a subspace of X_{α} . Prove that

$$\overline{\prod_{\alpha} A_{\alpha}} = \prod_{\alpha} \overline{A_{\alpha}}.$$

- 2. (14 points) Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Let G_f (called the graph of f) be the subspace $\{(x, f(x)) | x \in X\}$ of $X \times Y$. Prove that if Y is Hausdorff then G_f is closed.
- 3. (14 points) Let X be a topological space and let $f, g : X \to \mathbb{R}$ be continuous. Define $h: X \to \mathbb{R}$ by

$$h(x) = \min\{f(x), g(x)\}$$

Use the pasting lemma to prove that h is continuous. (You will not get full credit for any other method.)

4. (14 points) Define an equivalence relation on the interval [-1, 1] by

$$x \sim y \Leftrightarrow x = y \text{ or } x = -y$$

(you may *assume* that this is an equivalence relation, you do not have to prove it). Let X be the quotient space determined by this equivalence relation. Prove that X is homeomorphic to the interval [0, 1].

- 5. (14 points) Prove from the definitions that a compact Hausdorff space is normal. (You may use the fact that a closed subset of a compact space is compact.)
- 6. Let X and Y be topological spaces and let $f : X \to Y$ be a continuous function. Let $x_0 \in X$ and let $y_0 = f(x_0)$.
 - (a) (6 points) Give the definition of the function $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$, including the proof that it is well-defined.
 - (b) (10 points) Prove that if f is a covering map then f_* is one-to-one.
- 7. (14 points) Let D^2 be the unit disk $\{x^2 + y^2 \leq 1\}$ and let S^1 be the unit circle $\{x^2 + y^2 = 1\}$. Prove that S^1 is not a retract of D^2 (that is, prove that there is no continuous function $f: D^2 \to S^1$ whose restriction to S^1 is the identity function). You may use anything in Munkres for this.