Qualifying Examination MA 571 January 1997

Assume: All spaces are Hausdorff. All maps are continuous. Products have the product topology.

- 1. An <u>embedding</u> is an injective continuous map which is a homeomorphism onto its image.
 - a) Let $f: X \to Y$ be a one to one continuous map, and let X be compact. Show that f is an embedding.
 - b) Give an example of a map $f : \mathbb{R}^1 \to \mathbb{R}^2$ which is one to one but is not an embedding.
- 2. Let $Y = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be the product of a family of spaces $\{X_{\alpha} | \alpha \in \mathcal{A}\}$ with the product topology. Show that Y is connected if and only if X_{α} is connected for all α .
 - a) When \mathcal{A} is finite
 - b) When \mathcal{A} is arbitrary
- 3. Let X be a locally compact space.
 - a) Show X is completely regular.
 - b) Let A be a subspace homeomorphic to the unit interval I. Show there exists a retraction $r: X \to A$.
- 4. <u>The Hahn-Mazurkiewicz theorem</u> [Hocking and Young p.129]. Let X be a Hausdorff space. We say X is a <u>Peano</u> space if there exists a surjective map $f: I \to X$. Then X is Peano space if and only if X is compact, connected, locally connected, and metrizable.
 - a) Describe a map $I \to I \times I$ which is onto.
 - b) Show the product of arbitrarily many unit intervals may not be metrizable.
 - c) Give an example of a closed, connected bounded set in \mathbb{R}^2 which is not the image of some $f: I \to \mathbb{R}^2$.
 - d) Suppose that $p: \tilde{X} \to X$ is the simply connecting covering space over a Peano space X. Show that \tilde{X} is a Peano space if and only if $\pi_1(X)$ is finite.

5. Let $f: X \to Y$ be a closed map onto a compact space Y such that every fiber $f^{-1}(y)$ is compact. Show that X is compact.