MA 571 Qualifying Exam. January 1996.

Each problem is worth 12 points. There are 96 points altogether.

1. Let X be a metric space with metric d. Prove that d is continuous as a function from $X \times X$ to \mathbb{R} , where $X \times X$ has the "product metric" d' defined by

 $d'((x, y), (x_1, y_1)) = \max \left(d(x, x_1), d(y, y_1) \right)$

(you may assume d' is indeed a metric, you do not have to prove it).

- 2. Let X be an ordered set with the order topology. If X is connected, prove that X has the least upper bound property.
- 3. Let X be the closed unit disk in \mathbb{R}^{\neq} , and define an equivalence relation on X by: $a \sim b$ if either a = b or a and b are both on the unit circle. Let X^{*} be the partition of X into the equivalence classes of \sim . Show that X^{*}, with its quotient topology, is homeomorphic to the one-point compactification of the open unit disk.
- 4. Show that every locally compact Hausdorff space is regular.
- 5. A manifold is a Hausdorff space with the property that every point has a neighborhood homeomorphic to \mathbb{R}^{\ltimes} . Prove that every manifold is regular.
- 6. Prove that every compact Hausdorff space is a Baire space.
- 7. Let $p: E \to B$ be a covering map with B connected. Suppose that $p^{-1}(b_0)$ is finite for some $b_0 \in B$. Prove that, for every $b \in B$, $p^{-1}(b)$ has the same number of elements as $p^{-1}(b_0)$.
- 8. Let X be a topological space and $f : [0, 1] \to X$ any continuous function. Define \bar{f} by $\bar{f}(t) = f(1-t)$. Prove that $f * \bar{f}$ is path-homotopic to the constant path at f(0).