MA 571 Qualifying Exam. August 1996.

Each problem is worth 11 points.

- 1. Let X be a set, let \mathcal{B} be a basis for a topology \mathcal{T} on X, and let \mathcal{B}' be a basis for another topology \mathcal{T}' on X. Give a condition involving \mathcal{B} and \mathcal{B}' which is equivalent to the condition that \mathcal{T}' is finer than \mathcal{T} (recall that this means that every \mathcal{T} -open set is also \mathcal{T}' -open). **Prove** that your answer is correct.
- 2. Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

- 3. (a) Give an example of a space which is connected but not path-connected. You do not have to prove that your answer is correct.
 - (b) Give a metric space in which not every closed and bounded subset is compact. You do not have to prove that your answer is correct.
- 4. Prove that every compact subset of a Hausdorff space is closed.
- 5. Show that if Y is compact, then the projection map $X \times Y \to X$ is a closed map.
- 6. Prove that the one-point compactification of a locally-compact Hausdorff space is compact.
- 7. Let I be the unit interval, and let Y be a path-connected space. Prove that any two maps from I to Y are homotopic.
- 8. Let $p : E \to B$ be a covering map. Assume that B is connected and locally connected. Show that if C is a component of E, then $p|C : C \to B$ is a covering map.
- 9. Show that if B is simply connected, then any covering map $p: E \to B$ for which E is path connected is one-to-one.