\qquad

QUALIFYING EXAM

MA 571

FALL 1995

1. Let X be the union in R^{2} of the two line segments I and J where
$I=\{(t, 0) \mid-1 \leq t \leq 1\}$, (a VERTICAL interval) and
$J=\{(0, t) \mid-1 \leq t \leq 1\}$ (a HORIZONTAL interval).
Let O be the point of X common to both I and J.
Prove that any continuous injective map of X to itself maps O to O .
2. Let X be a metric space. Let $B(x ; r)=\{y \mid d(x, y)<r\}$, the open ball about x of radius r.
A) Give an example where $X=B\left(x_{0} ; 1\right)$ but no finite number of $1 / 2$ balls covers X ,
B) Suppose Y is a dense subset of X and is totally bounded. Prove X is too.
3. A) Let the dimensions p, q and r each be at least 2. Then the one-point union of the spheres $S^{p} \vee S^{q} \vee S^{r}$ is simply connected.
B) Construct a universal covering space for $P^{2} \vee S^{2}$, where P^{2} is the projective space and S^{2} the sphere.
C) From your answer to 3B), find the fundamental group of $P^{2} \vee S^{2}$.
4. Let K be the topologist's comb: K is the subset of R^{2} which is the union of the vertical closed segments
$t \times I=\{t\} \times\{(t, u) \mid 0 \leq u \leq 1\}$ for $t=1,1 / 2,1 / 3, . ., 1 / n, .$. and $t=0 ;$
PLUS the horizontal segment $\{(z, 0) \mid 0 \leq z \leq 1\}$.
Let A be the comb after we replace the VERTICAL segment $0 \times I$ with $0 \times Q$; let B be the comb after we replace the VERTICAL segment $0 \times I$ with $0 \times S$, where:
Q is the rational numbers in $[0,1]$; and
S is the IRRATIONAL numbers in $[0,1]$.
PROVE A and B are NOT homeomorphic.
5. A) Let X be a compact Hausdorff space. If $C_{1} \supseteq C_{2} \supseteq C_{3} \supseteq \ldots$ is a decreasing sequence of closed connected subsets of X. PROVE that $C_{*}=\bigcap C_{n}$, the intersection of ALL the sets, is connected too.
B) Give an example in which X is NOT compact but all else is as above, and in which the result in (A) fails.
6. Let A be a T_{2} space. For any space X define $F(X)$ to be the set of all continuous maps $f: X \longrightarrow A$.

Define a map $\Phi_{X}: X \longrightarrow A^{F(X)}$ by defining the value on the point x of X to be the point with f-coordinate $\pi_{f}(x)=f(x)$ for each index $f \in F(X)$.
A) Prove Φ is continuous.
B) Prove Φ is injective if for each $x \neq y$ there is a continuous map $f: X \longrightarrow A$ for which $f(x) \neq f(y)$.
C) Prove Φ is an embedding if for each point x and open set U containing x, there are maps f_{1}, \ldots, f_{n} in $F_{A}(X)$ and open sets O_{1}, \ldots, O_{n} in A for which $x \in f_{1}^{-1}\left(O_{1}\right) \cap \ldots \cap f_{n}^{-1}\left(O_{n}\right) \subseteq U$.

