QUALIFYING EXAMINATION MATH 571 JANUARY 1994

- 1. Let $f, g: X \to Y$ be continuous. Define $h: X \to Y \times Y$ by h(x) = (f(x), g(x)). Show that if f is an embedding then h is an embedding.
- 2. Let $f: X \to Y$ be continuous. Let C be a connected component of Y. Show that $f^{-1}(C)$ is a union of connected components of X.
- 3. Let $f: X \to Y$ be continuous, closed, and surjective. Show that if X is locally connected then Y is locally connected.
- Let X be locally compact Hausdorff and let X[∞] be its one point compactification. Let Y be a compact Hausdorff space such that X ⊂ Y and X is open and dense in Y.
 - (a) Show that there is a continuous function $f: Y \to X^{\infty}$ such that f(x) = x, $x \in X$.
 - (b) Show that such an f is unique.
- 5. Let $p: E \to B$ be a covering space with E path connected and locally path connected. Let $f: E \to E$ be continuous such that pf = p. Show that f is a homeomorphism.
- 6. Let X be locally compact Hausdorff and Y a space. Let C(X, Y) be the space of continuous functions from X to Y with the compact-open topology. Let Z be a space. Given $f: X \times Z \to Y$ define $\hat{f}: Z \to C(X, Y)$ by $\hat{f}(z)(x) = f(x, z)$. Show that f is continuous if and only if \hat{f} is continuous. (You may use the fact that the evaluation map $e: X \times C(X, Y) \to Y$ is continuous.)
- 7. Let $p : R \to S^1$ be the exponential map. Define $\psi : \pi_1(S^1; s_0) \to Z$ by $\psi([\sigma]) = \tilde{\sigma}(1)$, where $p\tilde{\sigma} = \sigma$ and $\tilde{\sigma}(0) = 0$. (Here $s_0 = (1, 0)$.)
 - (a) Show that ψ is well defined.
 - (b) Show that ψ is injective.