January 2022
Solve all six problems. Justify your answers. Each problem is worth 10 points.

1. Let M be a manifold of dimension n and let a and b be real numbers with $a<b$. Let $f: M \rightarrow(a, b)$ and $g:(a, b) \rightarrow M$ be C^{∞} functions. If $f(g(t))=t$ for every $t \in(a, b)$, does it follow that $n=1$? If $g(f(x))=x$ for every $x \in M$ does it follow that $n=1$? In each case, give a proof or a counterexample.
2. For each $a \in \mathbb{R}$, let let $f_{a}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by

$$
f_{a}(t)=(\sin (a \arctan t), \sin (2 a \arctan t))
$$

(a) For which values of a is f_{a} an immersion?
(b) For which values of a is f_{a} injective?
(c) For which values of a is f_{a} an embedding?
3. Let M and N be manifolds, and let Γ be a subset of N. Let \mathcal{I} be the set of injective immersions $f: M \rightarrow N$ such that $f(M)=\Gamma$. For f and g in \mathcal{I}, define the relation $f \sim g$ to mean that there is a diffeomorphism h of M such that $f \circ h=g$.
(a) Prove that \sim is an equivalence relation.
(b) Prove that if $f \in \mathcal{I}$ and $g \in \mathcal{I}$ are embeddings, then $f \sim g$.
(c) In the case that $M=\mathbb{R}$ and $N=\mathbb{R}^{2}$, give an example of $\Gamma \subset N$ and $f \in \mathcal{I}$ and $g \in \mathcal{I}$ such that $f \nsim g$.
4. Let N be a closed regular submanifold of a manifold M. Let $f \in C^{\infty}(N)$.
(a) Show there is a function $g \in C^{\infty}(M)$ such that $f(p)=g(p)$ for all $p \in N$.
(b) Suppose additionally that f is bounded. Show that there is a function $h \in C^{\infty}(M)$ such that $f(p)=h(p)$ for all $p \in N$ and such that $|h(p)| \leq \sup |f|$ for all $p \in M \backslash N$.
(c) Under what necessary and sufficient additional condition on f can we replace the ' \leq ' in part (b) by ' $<$ '?
5. Let A be an antisymmetric 3×3 matrix, and consider the vector field on \mathbb{R}^{3} given by $V(x)=$ $A x$.
(a) Prove that $V(x)$ is tangent to all spheres in \mathbb{R}^{3} centered at the origin.
(b) For any $w \in \mathbb{R}^{3}$ such that $A w=0$, prove that $V(x)$ is tangent to all spheres in \mathbb{R}^{3} centered at w.
(c) Let $\theta(t, p)$ be the one-parameter group on the unit sphere S^{2} corresponding to $V(x)$. Prove that for every $p \in S^{2}$, there is a circle C_{p} containing the orbit $\{\theta(t, p): t \in \mathbb{R}\}$.
6. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a C^{∞} function and define a differential 1-form on $\mathbb{R}^{n} \backslash\{0\}$ by

$$
\omega=f\left(|x|^{2}\right) \sum_{j=1}^{n} x^{j} d x^{j} .
$$

(a) Let $G: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ be given by $G(y)=\exp \left(-|y|^{2}\right) y$. Compute $G^{*} \omega$.
(b) Compute $d \omega$.
(c) If f is the natural logarithm function, do there exist functions $h \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ such that $d h=\omega$? If yes, give an explicit formula for all of them. If no, prove it.

