MA 562 Qualifying Exam January 2022

Solve all six problems. Justify your answers. Each problem is worth 10 points.

- 1. Let M be a manifold of dimension n and let a and b be real numbers with a < b. Let $f: M \to (a, b)$ and $g: (a, b) \to M$ be C^{∞} functions. If f(g(t)) = t for every $t \in (a, b)$, does it follow that n = 1? If g(f(x)) = x for every $x \in M$ does it follow that n = 1? In each case, give a proof or a counterexample.
- 2. For each $a \in \mathbb{R}$, let let $f_a \colon \mathbb{R} \to \mathbb{R}^2$ be given by

 $f_a(t) = (\sin(a \arctan t), \sin(2a \arctan t)).$

- (a) For which values of a is f_a an immersion?
- (b) For which values of a is f_a injective?
- (c) For which values of a is f_a an embedding?
- 3. Let M and N be manifolds, and let Γ be a subset of N. Let \mathcal{I} be the set of injective immersions $f: M \to N$ such that $f(M) = \Gamma$. For f and g in \mathcal{I} , define the relation $f \sim g$ to mean that there is a diffeomorphism h of M such that $f \circ h = g$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Prove that if $f \in \mathcal{I}$ and $g \in \mathcal{I}$ are embeddings, then $f \sim g$.
 - (c) In the case that $M = \mathbb{R}$ and $N = \mathbb{R}^2$, give an example of $\Gamma \subset N$ and $f \in \mathcal{I}$ and $g \in \mathcal{I}$ such that $f \not\sim g$.
- 4. Let N be a closed regular submanifold of a manifold M. Let $f \in C^{\infty}(N)$.
 - (a) Show there is a function $g \in C^{\infty}(M)$ such that f(p) = g(p) for all $p \in N$.
 - (b) Suppose additionally that f is bounded. Show that there is a function $h \in C^{\infty}(M)$ such that f(p) = h(p) for all $p \in N$ and such that $|h(p)| \leq \sup |f|$ for all $p \in M \setminus N$.
 - (c) Under what necessary and sufficient additional condition on f can we replace the ' \leq ' in part (b) by '<'?
- 5. Let A be an antisymmetric 3×3 matrix, and consider the vector field on \mathbb{R}^3 given by V(x) = Ax.
 - (a) Prove that V(x) is tangent to all spheres in \mathbb{R}^3 centered at the origin.
 - (b) For any $w \in \mathbb{R}^3$ such that Aw = 0, prove that V(x) is tangent to all spheres in \mathbb{R}^3 centered at w.
 - (c) Let $\theta(t, p)$ be the one-parameter group on the unit sphere S^2 corresponding to V(x). Prove that for every $p \in S^2$, there is a circle C_p containing the orbit $\{\theta(t, p) : t \in \mathbb{R}\}$.

6. Let $f: (0,\infty) \to \mathbb{R}$ be a C^{∞} function and define a differential 1-form on $\mathbb{R}^n \setminus \{0\}$ by

$$\omega = f(|x|^2) \sum_{j=1}^n x^j dx^j.$$

- (a) Let $G \colon \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ be given by $G(y) = \exp(-|y|^2)y$. Compute $G^*\omega$.
- (b) Compute $d\omega$.
- (c) If f is the natural logarithm function, do there exist functions $h \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ such that $dh = \omega$? If yes, give an explicit formula for all of them. If no, prove it.