MA 562 Qualify Exam August 2018

Notations:

- \mathbb{R} : set of real numbers; \mathbb{C} : set of complex numbers.
- $S^{n}:=\left\{x \in \mathbb{R}^{n+1} ; x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\}$: unit sphere in \mathbb{R}^{n+1}.
- $\mathbb{R} P^{n}=S^{n} /\{$ anti-podal map\}: n-dimensional projective space.

Problems (each problem has 20 points)

1. Consider the two form $F=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+4 y^{2}+9 z^{2}\right)^{3 / 2}}$ on $\mathbb{R}^{3}-\{(0,0,0)\}$. Prove that F is a closed form. Is F an exact form?
2. Prove that $M=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ; z_{1}^{2}+z_{2}^{2}=1\right\}=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} ; x_{1}^{2}-y_{1}^{2}+x_{2}^{2}-\right.$ $\left.y_{2}^{2}=1, x_{1} y_{1}+x_{2} y_{2}=0\right\}$ is a real 2-dimensional smooth manifold that is diffeomorphic to $S^{1} \times \mathbb{R}$.
3. Prove that the tangent bundle of S^{3} is trivial. In other words, there are 3 smooth vector fields on S^{3} that are linearly independent at any point. Is the tangent bundle of $\mathbb{R} P^{3}$ trivial?
4. Let M, N be two n-dimensional manifolds.
(a) Prove that if $f: M \rightarrow N$ is an immersion, then f is also a submersion.
(b) Prove that if $f: M \rightarrow N$ is a submersion, then f is an open map, i.e. it maps open sets on open sets. Use this to show that if M is compact and N is connected, then $f(M)=N$.
(c) Prove that there is no immersion from S^{n} into \mathbb{R}^{n}.
5. Let $M=\mathbb{R} \times \mathbb{R}_{+}=\left\{(x, y) \in \mathbb{R}^{2} ; y>0\right\}$ be the upper half plane. Calculate the local one parameter group of diffeomorphisms $\theta: W \rightarrow M$ generated by the vector field $V=\frac{\partial}{\partial x}+x y^{2} \frac{\partial}{\partial y}$ on M. Find the domain $W=\{(t, x, y) ; \alpha(x, y)<t<\beta(x, y)\} \subseteq \mathbb{R} \times M$ of θ.
6. Consider the distribution Δ on \mathbb{R}^{3} defined as the kernel of a nowhere zero 1-form α. In other words, $\Delta_{p}=\operatorname{Ker}\left(\alpha_{p}\right) \subset T_{p} \mathbb{R}^{3}$ for any $p \in \mathbb{R}^{3}$. Prove that the following conditions are equivalent:
(a) Δ is involutive: $[X, Y] \subset \Delta$ for any smooth vector fields $X, Y \subset \Delta$.
(b) In a neighborhood of any $p \in \mathbb{R}^{3}$, there exists a 1-form φ such that $d \alpha=\alpha \wedge \varphi$.
(c) $d \alpha \wedge \alpha=0$.
