MA 562 Qualify Exam August 2018

Notations:

- \mathbb{R} : set of real numbers; \mathbb{C} : set of complex numbers.
- $S^n := \{x \in \mathbb{R}^{n+1}; x_1^2 + \dots + x_{n+1}^2 = 1\}$: unit sphere in \mathbb{R}^{n+1} .
- $\mathbb{R}P^n = S^n / \{ \text{anti-podal map} \}$: *n*-dimensional projective space.

Problems (each problem has 20 points)

- 1. Consider the two form $F = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + 4y^2 + 9z^2)^{3/2}}$ on $\mathbb{R}^3 \{(0, 0, 0)\}$. Prove that F is a closed form. Is F an exact form?
- 2. Prove that $M = \{(z_1, z_2) \in \mathbb{C}^2; z_1^2 + z_2^2 = 1\} = \{(x_1, y_1, x_2, y_2) \in \mathbb{R}^2 \times \mathbb{R}^2; x_1^2 y_1^2 + x_2^2 y_2^2 = 1, x_1y_1 + x_2y_2 = 0\}$ is a real 2-dimensional smooth manifold that is diffeomorphic to $S^1 \times \mathbb{R}$.
- 3. Prove that the tangent bundle of S^3 is trivial. In other words, there are 3 smooth vector fields on S^3 that are linearly independent at any point. Is the tangent bundle of $\mathbb{R}P^3$ trivial?
- 4. Let M, N be two *n*-dimensional manifolds.
 - (a) Prove that if $f: M \to N$ is an immersion, then f is also a submersion.
 - (b) Prove that if $f: M \to N$ is a submersion, then f is an open map, i.e. it maps open sets on open sets. Use this to show that if M is compact and N is connected, then f(M) = N.
 - (c) Prove that there is no immersion from S^n into \mathbb{R}^n .
- 5. Let $M = \mathbb{R} \times \mathbb{R}_+ = \{(x, y) \in \mathbb{R}^2; y > 0\}$ be the upper half plane. Calculate the local one parameter group of diffeomorphisms $\theta : W \to M$ generated by the vector field $V = \frac{\partial}{\partial x} + xy^2 \frac{\partial}{\partial y}$ on M. Find the domain $W = \{(t, x, y); \alpha(x, y) < t < \beta(x, y)\} \subseteq \mathbb{R} \times M$ of θ .
- 6. Consider the distribution Δ on \mathbb{R}^3 defined as the kernel of a nowhere zero 1-form α . In other words, $\Delta_p = \text{Ker}(\alpha_p) \subset T_p \mathbb{R}^3$ for any $p \in \mathbb{R}^3$. Prove that the following conditions are equivalent:
 - (a) Δ is involutive: $[X, Y] \subset \Delta$ for any smooth vector fields $X, Y \subset \Delta$.
 - (b) In a neighborhood of any $p \in \mathbb{R}^3$, there exists a 1-form φ such that $d\alpha = \alpha \wedge \varphi$.
 - (c) $d\alpha \wedge \alpha = 0$.