Math 562: Winter 2018 Qualifying Exam (McReynolds)

PUID Number:

Work **<u>four out of five</u>** of the following problems. The time limit is two hours. Please explicitly indicate which four problems you want graded.

Problem 1. [15 points] Let *M* be a smooth connected manifold, $p, q \in M$, $v \in T_p(M)$, and $w \in T_q(M)$. Prove that there exists a diffeomorphism $f: M \to M$ with f(p) = q and $df_p(v) = w$.

Problem 2. [15 points] Let M_1, M_2, N be smooth manifolds and V_1, V_2, W be finite dimensional vector spaces.

(a) Let $L_j: V_j \to W$ be linear maps for j = 1, 2. Prove that if L_1 is onto, then

$$\operatorname{Image}(L_1) \oplus \{0\} + \{0\} \oplus \operatorname{Image}(L_2) + \Delta_W = W \times W$$

where Δ_W is the diagonal in $W \times W$.

(b) Let $f_j: M_j \to N$ be smooth maps for j = 1, 2. Prove that if f_1 is a submersion, then

$$Z = \{(p_1, p_2) \in M_1 \times M_2 : f_1(p_1) = f_2(p_2)\}$$

is a submanifold.

Problem 3. [15 points] Let $f: \mathbb{R}^5 \to \mathbb{R}^3$ be a smooth map. Prove that there exists a sphere $S \subset \mathbb{R}^3$ centered at the origin such that $f^{-1}(S)$ is a smooth submanifold of \mathbb{R}^5 .

Problem 4. [15 points] Let *M* be a compact, orientable *n*-manifold with boundary ∂M and let $i: \partial M \to M$ be the inclusion map. For $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^{n-k-1}(M)$ such that $i^*(\beta) = 0$, prove that

$$\int_M d\alpha \wedge \beta = (-1)^{k+1} \int_M \alpha \wedge d\beta.$$

Problem 5. [15 points] Let

$$\omega = zdx \wedge dy + (z^2 e^{xz} \ln(x^2 + 1) - y)dx \wedge dz + (x + y^2 z^3 \cos(y^2 + z^2))dy \wedge dz$$

be a smooth 2–form on \mathbb{R}^3 .

- (a) Is ω closed? Is ω exact? Prove you answers.
- (b) Let *S* be the surface given by the union of the two sets

$$C = \left\{ (x, y, z) : x^2 + y^2 = 1, z \in [-1, 1] \right\}$$

$$H = \left\{ (x, y, z) : x^2 + y^2 + (z - 1)^2 = 1, z \ge 1 \right\}.$$

Compute

$$\int_{S} \omega$$

Please specify which orientation you are using.