Math 562: Winter 2018 Qualifying Exam (McReynolds)

PUID Number: \qquad

Work four out of five of the following problems. The time limit is two hours. Please explicitly indicate which four problems you want graded.

Problem 1. [15 points] Let M be a smooth connected manifold, $p, q \in M, v \in T_{p}(M)$, and $w \in T_{q}(M)$. Prove that there exists a diffeomorphism $f: M \rightarrow M$ with $f(p)=q$ and $d f_{p}(v)=w$.

Problem 2. [15 points] Let M_{1}, M_{2}, N be smooth manifolds and V_{1}, V_{2}, W be finite dimensional vector spaces.
(a) Let $L_{j}: V_{j} \rightarrow W$ be linear maps for $j=1,2$. Prove that if L_{1} is onto, then

$$
\text { Image }\left(L_{1}\right) \oplus\{0\}+\{0\} \oplus \operatorname{Image}\left(L_{2}\right)+\Delta_{W}=W \times W
$$

where Δ_{W} is the diagonal in $W \times W$.
(b) Let $f_{j}: M_{j} \rightarrow N$ be smooth maps for $j=1,2$. Prove that if f_{1} is a submersion, then

$$
Z=\left\{\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}: f_{1}\left(p_{1}\right)=f_{2}\left(p_{2}\right)\right\}
$$

is a submanifold.

Problem 3. [15 points] Let $f: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ be a smooth map. Prove that there exists a sphere $S \subset \mathbf{R}^{3}$ centered at the origin such that $f^{-1}(S)$ is a smooth submanifold of \mathbf{R}^{5}.

Problem 4. [15 points] Let M be a compact, orientable n-manifold with boundary ∂M and let $i: \partial M \rightarrow M$ be the inclusion map. For $\alpha \in \Omega^{k}(M)$ and $\beta \in \Omega^{n-k-1}(M)$ such that $i^{*}(\beta)=0$, prove that

$$
\int_{M} d \alpha \wedge \beta=(-1)^{k+1} \int_{M} \alpha \wedge d \beta
$$

Problem 5. [15 points] Let

$$
\omega=z d x \wedge d y+\left(z^{2} e^{x z} \ln \left(x^{2}+1\right)-y\right) d x \wedge d z+\left(x+y^{2} z^{3} \cos \left(y^{2}+z^{2}\right)\right) d y \wedge d z
$$

be a smooth 2-form on \mathbf{R}^{3}.
(a) Is ω closed? Is ω exact? Prove you answers.
(b) Let S be the surface given by the union of the two sets

$$
\begin{aligned}
C & =\left\{(x, y, z): x^{2}+y^{2}=1, z \in[-1,1]\right\} \\
H & =\left\{(x, y, z): x^{2}+y^{2}+(z-1)^{2}=1, z \geq 1\right\}
\end{aligned}
$$

Compute

$$
\int_{S} \omega
$$

Please specify which orientation you are using.

