Math 562: Summer 2019 Qualifying Exam (McReynolds)

PUID Number:_____

Work the following problems. The time limit is two hours.

Problem 1. [20 points]

Let M, N be smooth manifolds and let $f: M \to N$ be a smooth function. Define the following:

- (a) For *f* to be an <u>immersion</u> at $p \in M$.
- (a) For f to be a local diffeomorphism.
- (c) For $q \in N$ to be a regular value.
- (d) For f to be proper.

Problem 2. [20 points]

State whether the following statement is true or false. You do not need to justify your answer.

- (a) If *M* is a smooth manifold and $C \subset M$ is a closed subset, then *C* is a submanifold of *M*.
- (b) If $f: M \to N$ is an immersion, then $\dim(M) \le \dim(N)$.
- (c) If f: M is a smooth bijective function, then f is a diffeomorphism.
- (d) If $\alpha \in \Omega^k(M)$ is a closed *k*-form, then $d\alpha = 0$.

Problem 3. [20 points]

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x, y) = (x^2 + y, y^2 - x)$. Compute the following:

- (a) df_p for $p = (x_0, y_0)$.
- (b) $f^*(dx)$.
- (b) $f^*(dy)$.
- (c) $f^*(dx \wedge dy)$.

Problem 4. [10 points]

Prove that the set

$$\{(x, y, z) \in \mathbf{R}^3 : x^2 + 2xz - 2yz - y^2 = 0, 2x - y + z = 3\}$$

is a submanifold of \mathbf{R}^3 in the subspace topology.

Problem 5. [20 points]

Let

$$M = \left\{ (x, y, z) : x^2 + y^2 + 1 = z^2, z > 0 \right\}$$

and

$$S = \{(x, y, z) \in M : x^2 + y^2 \le 3\}.$$

- (a) Prove that S is a manifold with boundary in the subspace topology.
- (b) Compute

where

$$\boldsymbol{\omega} = d\boldsymbol{x} \wedge d\boldsymbol{y} + (4-2z)d\boldsymbol{x} \wedge dz + (z-2)d\boldsymbol{y} \wedge dz.$$

 $\int_{S} \boldsymbol{\omega}$

Problem 6. [10 points]

Let *X* be a compact, oriented *n*-manifold. Prove that for any smooth differential (n-1)-form $\omega \in \Omega^{n-1}(X)$, there exists a point $x \in X$ where $d\omega = 0$.

Problem 7. [20 points]

Let $f: X \to Y$ be a smooth map between smooth compact, orientable *n*-manifolds.

(a) Prove that if there exists a smooth differential *n*-form $\omega \in \Omega^n(Y)$ such that

$$\int_X f^*(\boldsymbol{\omega}) \neq 0,$$

then f is surjective.

(b) Is the converse true? Justify your answer.