Math 562: Summer 2015 Qualifying Exam (McReynolds)

PUID Number:_____

Work **<u>four out of five</u>** of the following problems. The time limit is two hours. Please explicitly indicate which four problems you want graded.

Problem 1. [15 points]

Let $M(n, \mathbf{R})$ be the set of all *n* by *n* matrices (this is a manifold diffeomorphic to \mathbf{R}^{n^2}). Let $M_k(n, \mathbf{R})$ denote the subset of all rank *k* matrices. Prove that $M_k(n, \mathbf{R})$ is a submanifold and find its dimension.

Problem 2. [15 points]

Let $f: \mathbf{R}^5 \to \mathbf{R}^3$ be a smooth map. Prove that there exists a sphere $S \subset \mathbf{R}^3$ centered about the origin such that $f^{-1}(S)$ is a smooth submanifold of \mathbf{R}^5 .

Problem 3. [15 points]

Let *X*, *Y* be compact, oriented *n*-manifolds without boundary and assume that *Y* is connected. Prove that if $f: X \to Y$ is a smooth function, then

$$\deg(f) = I(\operatorname{Graph}(f), X \times \{y\})$$

for any $y \in Y$.

Problem 4. [15 points]

Let $S^2 \subset \mathbf{R}^3$ be the standard 2-sphere and $i: S^2 \to \mathbf{R}^3$ the inclusion map. Define

$$\boldsymbol{\omega} = (x^2 + x + y)dy \wedge dz.$$

(a) Calculate

$$\int_{S^2} \boldsymbol{\omega}.$$

State which orientation you are using.

(b) Prove or disprove: there exists a closed form $\alpha \in \Omega^2(\mathbf{R}^3)$ such that $i^*(\alpha) = i^*(\omega)$.

Problem 5. [15 points]

Let M,N be compact, oriented manifolds of dimension m,n, respectively. Orient $M \times N$ with the product orientation and let $P_M, P_N \colon M \times N \longrightarrow M, N$ be the projection maps onto M, N, respectively. Prove that if $\omega \in \Omega^m(M)$ and $\eta \in \Omega^n(N)$ that

$$\int_{M\times N} P_M^*(\omega) \wedge P_N^*(\eta) = \int_M \omega \cdot \int_N \eta.$$