Qualifying Examination January 2011 Math 562 – Professor Donnelly

- 1. Let M be a nonempty smooth manifold of dimension $n \ge 1$. Show that $C^{\infty}(M)$ is infinite dimensional.
- 2. Prove that the elements v_1, v_2, \ldots, v_r of the vector space V are linearly independent if and only if $v_1 \wedge v_2 \wedge \cdots \wedge v_r \neq 0$.
- 3. Show that the Lie derivative on tensor fields satisfies $L_X L_Y L_Y L_X = L_{L_X Y}$.
- 4. Deduce the divergence theorem of advanced calculus from the general Stokes' theorem on manifolds.
- 5. Give an example of a 3-tensor that cannot be written as the sum of an alternating tensor and a symmetric tensor.
- 6. Let G be a connected Lie group and \mathfrak{g} its Lie algebra. Prove that G is abelian if and only if \mathfrak{g} is abelian.
- 7. Give an example of a complete noncompact Riemannian manifold for which there is no geodesic, defined on $(-\infty, \infty)$, which minimizes the distance between any two points in its image.
- 8. Show that the distribution on R^4 spanned by $\partial_y + x \partial_z$ and $\partial_x + y \partial_w$ has no 2-dimensional integral submanifolds.

9. Prove that
$$\begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$$
 is not e^A for any $A \in \mathfrak{gl}(2, R)$.

10. Let Φ be a differentiable mapping from a manifold M onto a manifold N. A vector field X is projectable if there exists a vector field Y on N such that $d\Phi(X) = Y$. If $d\Phi_p$ is surjective, for all $p \in M$, and $d\Phi_p(X_p) = d\Phi_q(X_q)$, whenever $\Phi(p) = \Phi(q)$, show that X is projectable.