Qualifying Exam - MA 56200 - Jan 2010

Name: \qquad

Each problem is worth 6 points.

(1) (a) Prove that

$$
M:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

is a smooth manifold. Determine its dimension.
(b) Does M have boundary? If yes, determine ∂M.
(2) Let M be a manifold without boundary.
(a) Give one definition of $T_{x} M, x \in M$.
(b) Let $f: M \longrightarrow \mathbb{R}$ be a smooth function. Define $D f(x): T_{x} M \longrightarrow \mathbb{R}$.
(c) Let $m \in M$ be a maximum of f, that is, $f(x) \leq f(m)$ for all $x \in M$.

Prove that

$$
D f(m): T_{m} M \longrightarrow \mathbb{R}
$$

vanishes.
(3) We denote by $M(n)$ the vector space of all $n \times n$ matrices. Let $O(n)$ be the orthogonal group, that is

$$
O(n):=\left\{A \in M(n) \mid A A^{t}=\mathbb{1}\right\} .
$$

(a) Prove that $O(n)$ is a manifold. Determine its dimension.
(b) Give an explicit description of $T_{1} O(n)$.
(4) We denote by $\mathbb{D}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 100\right\}$ the closed disk of radius 10 . Let $v: \mathbb{D}^{2} \longrightarrow \mathbb{R}^{2}$ be the vector field given by

$$
v(x, y)=\left(p(x) e^{x}, q(y) e^{y}\right)
$$

where $p(x)=x^{3}-x$ and $q(y)=y^{3}+3 y^{2}+2 y$.
Compute the index $\operatorname{ind}(v)$.

Turn the page

(5) Let $X=\frac{\partial}{\partial x}-y \frac{\partial}{\partial z}$ and $Y=\frac{\partial}{\partial y}-z \frac{\partial}{\partial x}$ be vector fields on \mathbb{R}^{3} with respect to the standard coordinates $(x, y, z) \in \mathbb{R}^{3}$.
Compute $[X, Y]$.
(6) Let G be a Lie group. We denote by L_{g} resp. R_{g} left resp. right multiplication with $g \in G$.
(a) Give the definition of a left invariant vector field X and prove that $\left(R_{g}\right)_{*} X$ is also left invariant.
(b) Use part (a) to prove that the map $A d(g): \mathfrak{g} \longrightarrow \mathfrak{g}$ defined by

$$
A d(g) X:=\left(R_{g^{-1}}\right)_{*} X
$$

is well-defined. That is, prove that $X \in \mathfrak{g}$ implies $\operatorname{Ad}(g) X \in \mathfrak{g}$.
(c) State the definition of the exponential map exp : $\mathfrak{g} \longrightarrow G$ in terms of the flow of a left invariant vector field. Prove

$$
(A d(g) X)(e)=\left.\frac{d}{d t}\right|_{t=0}\left(g \cdot \exp (t X) \cdot g^{-1}\right)
$$

(7) We consider \mathbb{R}^{6} with coordinates $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$ and define the 1 -form

$$
\lambda=\sum_{i=1}^{3} x_{i} d y_{i}
$$

(a) Compute $\omega:=d \lambda$.
(b) Compute $\omega \wedge \omega \wedge \omega$. Simplify all expressions!
(c) Show that $\omega \wedge \omega$ is exact, that is, find a 3 -form Λ with $\omega \wedge \omega=d \Lambda$.

