Qualifying Exam — MA 56200 — Jan 2010

Name: _____

Each problem is worth 6 points.

(1) (a) Prove that

 $M:=\{(x,y,z)\in \mathbb{R}^3 \mid x^2+y^2+z^2\leq 1\}$ is a smooth manifold. Determine its dimension.

- (b) Does M have boundary? If yes, determine ∂M .
- (2) Let M be a manifold without boundary.
 - (a) Give one definition of $T_x M$, $x \in M$.
 - (b) Let $f: M \longrightarrow \mathbb{R}$ be a smooth function. Define $Df(x): T_x M \longrightarrow \mathbb{R}$.
 - (c) Let $m \in M$ be a maximum of f, that is, $f(x) \leq f(m)$ for all $x \in M$. Prove that

$$Df(m): T_m M \longrightarrow \mathbb{R}$$

vanishes.

(3) We denote by M(n) the vector space of all $n \times n$ matrices. Let O(n) be the orthogonal group, that is

$$O(n) := \{A \in M(n) \mid AA^t = 1\}$$
.

- (a) Prove that O(n) is a manifold. Determine its dimension.
- (b) Give an explicit description of $T_{\mathbb{I}}O(n)$.
- (4) We denote by $\mathbb{D} := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 100\}$ the closed disk of radius 10. Let $v : \mathbb{D}^2 \longrightarrow \mathbb{R}^2$ be the vector field given by

 $v(x,y) = (p(x)e^x, q(y)e^y)$ where $p(x) = x^3 - x$ and $q(y) = y^3 + 3y^2 + 2y$. Compute the index ind(v).

Turn the page

- (5) Let $X = \frac{\partial}{\partial x} y \frac{\partial}{\partial z}$ and $Y = \frac{\partial}{\partial y} z \frac{\partial}{\partial x}$ be vector fields on \mathbb{R}^3 with respect to the standard coordinates $(x, y, z) \in \mathbb{R}^3$. Compute [X, Y].
- (6) Let G be a Lie group. We denote by L_g resp. R_g left resp. right multiplication with $g \in G$.
 - (a) Give the definition of a left invariant vector field X and prove that $(R_g)_*X$ is also left invariant.
 - (b) Use part (a) to prove that the map $Ad(g):\mathfrak{g}\longrightarrow\mathfrak{g}$ defined by

$$Ad(g)X := (R_{q^{-1}})_*X$$

is well-defined. That is, prove that $X \in \mathfrak{g}$ implies $Ad(g)X \in \mathfrak{g}$.

(c) State the definition of the exponential map $\exp : \mathfrak{g} \longrightarrow G$ in terms of the flow of a left invariant vector field. Prove

$$(Ad(g)X)(e) = \frac{d}{dt}\Big|_{t=0} (g \cdot \exp(tX) \cdot g^{-1})$$
.

(7) We consider \mathbb{R}^6 with coordinates $(x_1, x_2, x_3, y_1, y_2, y_3)$ and define the 1-form

$$\lambda = \sum_{i=1}^{3} x_i \, dy_i$$

- (a) Compute $\omega := d\lambda$.
- (b) Compute $\omega \wedge \omega \wedge \omega$. Simplify all expressions!
- (c) Show that $\omega \wedge \omega$ is exact, that is, find a 3-form Λ with $\omega \wedge \omega = d\Lambda$.