Print your name:_

1. The hyperbolic space \mathbf{H}^n is the unit disc $\{(x_1, \ldots, x_n) \mid \sum_i x_i^2 < 1\}$ with the hyperbolic metric $g_H = \left(\frac{2}{1-\sum_i x_i^2}\right)^2 g_E$, where g_E is the Euclidean metric. Consider the parametrized surface $S = F(D^2) \subset \mathbf{H}^3$, where F(u, v) := (u, v - u, v) and $D^2 = \{(u, v) \mid u^2 + v^2 < 1/4\}$. Let Ω be the volume form on S associated to the metric induced from the hyperbolic metric, and the orientation determined by the parametrization.

- (a) Express $F^*\Omega$ in du, dv.
- (b) Use the Stokes' theorem to express the area of S as a line integral over ∂D .

2. Let $SL(2,\mathbb{R}) \subset GL(2,\mathbb{R})$ be the Lie group of 2×2 real matrices of determinant 1. Let x_{ij} denote the *global* coordinate function on $GL(2,\mathbb{R})$ which sends a matrix to its *ij*-th entry. Let *e* denote the identity.

(a) Let v be a left invariant vector field on $GL(2,\mathbb{R})$. Then $v(g) = \sum_{ij} f_{ij}(g) \frac{\partial}{\partial x_{ij}}$, where f_{ij} is a function on $GL(2,\mathbb{R})$. Express the matrix $(f_{ij}(g))$ in terms of the matrix $(f_{ij}(e))$ for a general $g \in GL(2,\mathbb{R})$.

(b) It is known that by sending v to the matrix $(f_{ij}(e))$ above, the Lie algebra of $GL(2,\mathbb{R})$ can be identified with the Lie algebra of 2×2 matrices and commutators, and hence the Lie algebra of $SL(2,\mathbb{R})$ is identified with a Lie subalgebra of the latter. Show that $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is an element in this Lie subalgebra, and find the 1-dimensional subgroup of $SL(2,\mathbb{R})$ which is an integral manifold of the corresponding invariant vector field.

3. Let $\mathbb{T}^2 = (\mathbb{R}/\mathbb{Z})^2$. Show that $\Omega^*(\mathbb{T}^2)$ is a free module over $C^{\infty}(\mathbb{T}^2)$, and compute the de Rham cohomology groups of \mathbb{T}^2 .

4. Let M be a manifold of dimension m and α be a nowhere vanishing 1-form on M. Let ξ_{α} denote the (m-1)-plane distribution ker α , regarding $\alpha(x)$ as a linear map from $T_x M$ to \mathbb{R} .

- (a) Show that ξ_{α} is integrable iff $\alpha \wedge d\alpha = 0$.
- (b) Suppose m = 2n + 1 is odd. Show that the following two conditions are equivalent: (i) The bilinear form $d\alpha$ on $T_x M \times T_x M$ is nondegenerate when restricted on $\xi_{\alpha}(x) \times \xi_{\alpha}(x)$ for every $x \in M$;

(ii) $\alpha \wedge (d\alpha)^n$ is nowhere vanishing.

(Hint: Assume the following fact from linear algebra: If V is a finite dimensional vector space and w is a nondegenerate skew-symmetric bilinear form on $V \times V$, then there is a basis $\{u_1, \ldots, u_k, v_1, \ldots, v_k\}$ of V, such that $w(u_i, u_j) = w(v_i, v_j) = 0$, $w(u_i, v_j) = \delta_{ij} \forall i, j$.)

(c) A 1-form α satisfying the conditions in (b) above is called a *contact form*. Let N be a Riemannian manifold. Show that the 1-form α_{can} on T^*N defined below restricts to a contact form on the unit cotangent bundle of N: Let V be a tangent vector at $(x, p) \in T^*N$, where $x \in N$ and $p \in T^*_x N$, and let $\pi : T^*N \to N$ be the projection map. Then the pairing $\langle \alpha_{can}(x, p), V \rangle := \langle p, \pi_*V \rangle$.

5. Let M be a compact connected Riemannian manifold, and $f: M \to S^1 = \mathbb{R}/\mathbb{Z}$ be a submersion. For $t \in S^1$, denote the *level hypersurfaces* $f^{-1}(t)$ by N_t .

- (a) Show that N_t are embedded submanifolds, and they are orientable iff M is.
- (b) Let v_f denote the vector field dual to the 1-form df. Show that v_f is nowhere vanishing and complete, and that f is surjective.
- (c) Show that M can not be simply connected.