Print your name:

1. The hyperbolic space \mathbf{H}^{n} is the unit disc $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i} x_{i}^{2}<1\right\}$ with the hyperbolic metric $g_{H}=\left(\frac{2}{1-\sum_{i} x_{i}^{2}}\right)^{2} g_{E}$, where g_{E} is the Euclidean metric. Consider the parametrized surface $S=$ $F\left(D^{2}\right) \subset \mathbf{H}^{3}$, where $F(u, v):=(u, v-u, v)$ and $D^{2}=\left\{(u, v) \mid u^{2}+v^{2}<1 / 4\right\}$. Let Ω be the volume form on S associated to the metric induced from the hyperbolic metric, and the orientation determined by the parametrization.
(a) Express $F^{*} \Omega$ in $d u, d v$.
(b) Use the Stokes' theorem to express the area of S as a line integral over ∂D.
2. Let $S L(2, \mathbb{R}) \subset G L(2, \mathbb{R})$ be the Lie group of 2×2 real matrices of determinant 1 . Let $x_{i j}$ denote the global coordinate function on $G L(2, \mathbb{R})$ which sends a matrix to its $i j$-th entry. Let e denote the identity.
(a) Let v be a left invariant vector field on $G L(2, \mathbb{R})$. Then $v(g)=\sum_{i j} f_{i j}(g) \frac{\partial}{\partial x_{i j}}$, where $f_{i j}$ is a function on $G L(2, \mathbb{R})$. Express the matrix $\left(f_{i j}(g)\right)$ in terms of the matrix $\left(f_{i j}(e)\right)$ for a general $g \in G L(2, \mathbb{R})$.
(b) It is known that by sending v to the matrix $\left(f_{i j}(e)\right)$ above, the Lie algebra of $G L(2, \mathbb{R})$ can be identified with the Lie algebra of 2×2 matrices and commutators, and hence the Lie algebra of $S L(2, \mathbb{R})$ is identified with a Lie subalgebra of the latter. Show that $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is an element in this Lie subalgebra, and find the 1-dimensional subgroup of $S L(2, \mathbb{R})$ which is an integral manifold of the corresponding invariant vector field.
3. Let $\mathbb{T}^{2}=(\mathbb{R} / \mathbb{Z})^{2}$. Show that $\Omega^{*}\left(\mathbb{T}^{2}\right)$ is a free module over $C^{\infty}\left(\mathbb{T}^{2}\right)$, and compute the de Rham cohomology groups of \mathbb{T}^{2}.
4. Let M be a manifold of dimension m and α be a nowhere vanishing 1-form on M. Let ξ_{α} denote the ($m-1$)-plane distribution ker α, regarding $\alpha(x)$ as a linear map from $T_{x} M$ to \mathbb{R}.
(a) Show that ξ_{α} is integrable iff $\alpha \wedge d \alpha=0$.
(b) Suppose $m=2 n+1$ is odd. Show that the following two conditions are equivalent:
(i) The bilinear form $d \alpha$ on $T_{x} M \times T_{x} M$ is nondegenerate when restricted on $\xi_{\alpha}(x) \times \xi_{\alpha}(x)$ for every $x \in M$;
(ii) $\alpha \wedge(d \alpha)^{n}$ is nowhere vanishing.
(Hint: Assume the following fact from linear algebra: If V is a finite dimensional vector space and w is a nondegenerate skew-symmetric bilinear form on $V \times V$, then there is a basis $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$ of V, such that $w\left(u_{i}, u_{j}\right)=w\left(v_{i}, v_{j}\right)=0, w\left(u_{i}, v_{j}\right)=\delta_{i j} \forall i, j$.)
(c) A 1 -form α satisfying the conditions in (b) above is called a contact form. Let N be a Riemannian manifold. Show that the 1 -form $\alpha_{c a n}$ on $T^{*} N$ defined below restricts to a contact form on the unit cotangent bundle of N : Let V be a tangent vector at $(x, p) \in T^{*} N$, where $x \in N$ and $p \in T_{x}^{*} N$, and let $\pi: T^{*} N \rightarrow N$ be the projection map. Then the pairing $\left\langle\alpha_{c a n}(x, p), V\right\rangle:=\left\langle p, \pi_{*} V\right\rangle$.
5. Let M be a compact connected Riemannian manifold, and $f: M \rightarrow S^{1}=\mathbb{R} / \mathbb{Z}$ be a submersion. For $t \in S^{1}$, denote the level hypersurfaces $f^{-1}(t)$ by N_{t}.
(a) Show that N_{t} are embedded submanifolds, and they are orientable iff M is.
(b) Let v_{f} denote the vector field dual to the 1 -form $d f$. Show that v_{f} is nowhere vanishing and complete, and that f is surjective.
(c) Show that M can not be simply connected.
