Qualifying Examination January 2006 Math 562 – Professor Donnelly

- 1. If M is a compact manifold, show that every continuous map $M \to S^p$ can be uniformly approximated by a smooth map.
- 2. If $\dim(M) < p$, show that every continuous map $M \to S^p$ is homotopic to a constant.
- 3. Consider $f(x,y) = \left(\frac{x^2 y^2}{x^2 + y^2}, \frac{xy}{x^2 + y^2}\right)$. Does this map from $R^2 (0,0)$ to R^2 have a local inverse near (x,y) = (0,1)?
- 4. If $F: G \to H$ is a Lie group homomorphism, show that the kernel of $F_*: \text{Lie}(G) \to \text{Lie}(H)$ is the Lie algebra of the kernel of F.
- 5. Show that every closed 1-form on the open shell 1 < ||x|| < 2 in \mathbb{R}^3 is exact. Find a 2-form on the same shell which is closed but not exact.
- 6. Determine the flow associated to the vector field $V = x_2 \frac{\partial}{\partial x_1} + x_3 \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3}$ in R^3 .
- 7. Is it possible to solve $xy^2 + xzu + yv^2 = 3$, $u^3yz + 2xv u^2v^2 = 2$ for u(x, y, z), v(x, y, z) near (x, y, z) = (1, 1, 1), (u, v) = (1, 1)?
- 8. Show that $TS^n \times R$ is diffeomorphic to $S^n \times R^{n+1}$.
- 9. Let M, N be smooth manifolds and $f: M \to N$ a smooth map. Define $F: M \to M \times N$ by F(x) = (x, f(x)). Show that for every smooth vector field V on M, there is a smooth vector field on $M \times N$ that is F-related to V.
- 10. Show that the matrix exponential satisfies $\det(e^A) = e^{TrA}$.