QUALIFYING EXAMINATION JANUARY 2005 MATH 562 - Prof. Catlin

- 1. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be linearly independent vector fields defined in neighborhoods about $p \in M$ and $q \in N$, respectively, where M and N are manifolds of dimension n. Let η_1, \ldots, η_n and $\omega_1, \ldots, \omega_n$ be the the corresponding dual frames of T^*M and T^*N . Let $f: M \to N$ be a smooth map satisfying f(p) = q.
 - (a) Calculate the matrix of $f^*: T^*_q N \to T^*_p M$ in terms of the matrix of T_*f at p.
 - (b) If $g = \sum_{k,l=1}^{n} g_{k,l} \omega_k \otimes \omega_l$ is a Riemannian metric defined in a neighborhood of $q \in N$, and if $G = \sum G_{i,j} \eta_i \otimes \eta_j$ is defined near p by $G = f^*g$, then calculate the matrix $[G_{i,j}]$ in terms of the matrices of g and f_* .
- 2. Let O(N) denote the set of $n \times n$ real matrices A, such that ${}^{t}A : A = I$ where ${}^{t}A$ denotes the transpose of A. Show that A is a compact manifold.
- 3. Show that the de Rham cohomology group $H^n(M)$ has positive dimension if M is compact and orientable.
- 4. Using differential forms, show that real projective space \mathbf{P}^n is not orientable if n is even.
- 5. Let f(x, y, z) be a smooth positive function in $W = \mathbb{R}^n / \{0\}$ and define $F: W \to W$ by F(x, y, z) = f(x, y, z)(x, y, z). Let

$$T = \{F(x, y, z); (x, y, z) \in S^2 \text{ and } x, y, z > 0\},\$$

where $S^2 = \{(x, y, z); |x|^2 + |y|^2 + |z|^2 = 1\}$. If μ is the standard orientation on S^2 , let T be given the orientation $F_*\mu$. Calculate

$$\int_T \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(|x|^2 + |y|^2 + |z|^2)^{3/2}}.$$