QUALIFYING EXAMINATION
 JANUARY 2005
 MATH 562-Prof. Catlin

1. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be linearly independent vector fields defined in neighborhoods about $p \in M$ and $q \in N$, respectively, where M and N are manifolds of dimension n. Let $\eta_{1}, \ldots, \eta_{n}$ and $\omega_{1}, \ldots, \omega_{n}$ be the the corresponding dual frames of $T^{*} M$ and $T^{*} N$. Let $f: M \rightarrow N$ be a smooth map satisfying $f(p)=q$.
(a) Calculate the matrix of $f^{*}: T_{q}^{*} N \rightarrow T_{p}^{*} M$ in terms of the matrix of $T_{*} f$ at p.
(b) If $g=\sum_{k, l=1}^{n} g_{k, l} \omega_{k} \otimes \omega_{l}$ is a Riemannian metric defined in a neighborhood of $q \in N$, and if $G=\sum G_{i, j} \eta_{i} \otimes \eta_{j}$ is defined near p by $G=f^{*} g$, then calculate the matrix $\left[G_{i, j}\right]$ in terms of the matrices of g and f_{*}.
2. Let $O(N)$ denote the set of $n \times n$ real matrices A, such that ${ }^{t} A$: $A=I$ where ${ }^{t} A$ denotes the transpose of A. Show that A is a compact manifold.
3. Show that the de Rham cohomology group $H^{n}(M)$ has positive dimension if M is compact and orientable.
4. Using differential forms, show that real projective space \mathbf{P}^{n} is not orientable if n is even.
5. Let $f(x, y, z)$ be a smooth positive function in $W=\mathbf{R}^{n} /\{0\}$ and define $F: W \rightarrow W$ by $F(x, y, z)=f(x, y, z)(x, y, z)$. Let

$$
T=\left\{F(x, y, z) ;(x, y, z) \in S^{2} \text { and } x, y, z>0\right\}
$$

where $S^{2}=\left\{(x, y, z) ;|x|^{2}+|y|^{2}+|z|^{2}=1\right\}$. If μ is the standard orientation on S^{2}, let T be given the orientation $F_{*} \mu$. Calculate

$$
\int_{T} \frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(|x|^{2}+|y|^{2}+|z|^{2}\right)^{3 / 2}}
$$

