QUALIFYING EXAMINATION JANUARY 2004

MATH 562 - Professor Donnelly

Each question is worth ten points.

- 1. Prove that a *d*-dimensional manifold X, for which there exists an immersion $f: X \to \mathbb{R}^{d+1}$, is orientable if and only if there is a smooth nowhere vanishing normal vector field along (X, f).
- 2. Define $\omega = \frac{-y \, dx}{x^2 + y^2} + \frac{x \, dy}{x^2 + y^2}$. Calculate $\int_{\gamma} \omega$, where γ is the curve $x^8 + y^8 = 1$, oriented counterclockwise.
- 3. Let $f(x, y, z) = x^2y + e^x + z$. Show that there exists a differentiable function g(y, z), defined near (y, z) = (1, -1), so that g(1, -1) = 0 and f(g(y, z), y, z) = 0.
- 4. Prove that the set of all 3×3 matrices of the form

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

is a Lie group and that the exponential mapping in G maps T_eG in a one-one manner globally onto G.

- 5. Let M be a compact manifold and $f: M \to R$, a C^1 function. Show that there exist at least two points where df = 0. Give an example with exactly two points.
- 6. Suppose $p \leq d$ and let $\omega_1, \omega_2, \ldots, \omega_p$ be linearly independent 1-forms on M^d such that for some $\theta_1, \theta_2, \ldots, \theta_p$, $\sum_{i=1}^p \theta_i \wedge \omega_i = 0$. Show $\theta = \sum_{j=1}^p A_{ij}\omega_j$ for C^∞ functions A_{ij} , satisfying $A_{ij} = A_{ji}$.
- 7. Show that $S^k \times S^\ell$ can be embedded in $\mathbb{R}^{k+\ell+1}$.
- 8. Is the open ball B^n in \mathbb{R}^n diffeomorphic to \mathbb{R}^n ?
- 9. Define $\zeta = \frac{x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy}{r^3}$ in $R^3 0$. a. Show $d\zeta = 0$ b. Is ζ exact in $R^3 - 0$? c. Is ζ exact in the complement of each line through 0?
- 10. Prove that the unit tangent bundle of S^2 is diffeomorphic to SO(3).