562 Qualifying Exam-2001 Spring

1(a). Let $X_{1}=z \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}, X_{2}=y \frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+x \frac{\partial}{\partial z}$ be vector fields in R^{3}. Do they span the tangent space of a two dimensional surface at $(1,-1,1)$? Explain.
(b). Given a dimension one distribution of vector fields on a differentiable manifold, is it always integrable? Why?
2 (a). Explain the notions of fundamental group $\pi_{1}(M)$ and de Rham coholomogy group $H^{1}(M)$ of a differentiable manifolds.
(b). Explain from definition that $\pi_{1}\left(R^{2}\right)=0$ and $H^{1}\left(R^{2}\right)=0$.
3. Consider a two torus T^{2} in R^{3} parametrized by

$$
(x, y, z)=(r \sin u,(R+r \cos u) \sin v,(R+r \cos u) \cos v)
$$

where $R>r>0$ and $0 \leq u, v<2 \pi$.
(a). Let $z: T^{2} \rightarrow R$ be the projection into the third coordinate. Explain why the level set $z^{-1}(c)$ on T^{2} is a regular submanifold for $c \neq R-r,-R+r$.
(b). Explain why the level set $z^{-1}(R-r)$ on T^{2} is the image of an immersed submanifold. A simple geometric picture may help.
(c). Explicitly find two linear independent closed 1 -form on T^{2} and a closed 2-form on T^{2}. Explain why T^{2} is orientable.
(d). Let $f: T^{2} \rightarrow T^{2}$ be the map sending (u, v) to $(u+\pi, 2 \pi-v)$ (modulo 2π). Show that f and the identity map i on T^{2} form a group G of two elements. Is the quotient space T^{2} / G an orientable surface? Why?
(e). Explain, by looking into a picture of the manifold, the regions of u, v on which the Gaussian curvature is negative, positive or zero.
4. Let M be a orientable two dimensional Riemannian manifold. Let Ω be a non-trivial volume form on M.
(a). Explain Ω must be a closed two form on M.
(b). Is Ω an exact two-form? Explain.
5. Let C be a curve in R^{4} parametrized by arc length. Prove that there exists an orthonormal frame $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ of vectors along C such that

$$
\left(\begin{array}{c}
\dot{X}_{1} \\
\dot{X}_{2} \\
\dot{X}_{3} \\
\dot{X}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{1} & 0 & 0 \\
-a_{1} & 0 & a_{2} & 0 \\
0 & -a_{2} & 0 & a_{3} \\
0 & 0 & -a_{3} & 0
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right)
$$

where a_{i} are some functions along the curve C, and the differentiation is taken with respect to the parametrization of C.

