554 QUALIFYING EXAM, JAN 6, 2022

Attempt all questions. Time 2 hrs.

1. ($5+10 \mathrm{pts}$) Let A be an $n \times n$ complex matrix.
(a) Define the adjugate, $\operatorname{adj}(A)$, of A.
(b) Suppose eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{n}$. Express the eigenvalues of $\operatorname{adj}(A)$ in terms of $\lambda_{1}, \ldots, \lambda_{n}$.
2. ($5+5+5+5 \mathrm{pts}$) Let A, B be complex $n \times n$ matrices. Prove or disprove each of the following statements.
(a) If A and B are diagonalizable, then so is $A+B$.
(b) If A and B are diagonalizable, then so is $A B$.
(c) If $A^{2}=A$, then A is diagonalizable.
(d) If A is invertible, and A^{2} is diagonalizable, then A is diagonalizable.
3. ($10+5+5$ pts) Let V be a finite dimensional complex inner product space and $T \in$ End (V).
(a) Prove that there exists $P, U \in \operatorname{End}(V)$ such that P is positive semi-definite, U is unitary and such that $T=P U$.
(b) Comment on the uniqueness of P, U.
(c) Prove that in the decomposition in part (a), $P U=U P$ if and only if T is normal.
4. $(5+10 \mathrm{pts}) \mathrm{pts}$
(a) When is a complex square matrix unitary?
(b) Prove that any complex square matrix A can be written as a product

$$
A=U D V
$$

where D is a diagonal matrix and U, V are unitary matrices.
5. (20 pts) Let A, B be $n \times n$ diagonalizable $n \times n$ complex matrices. Prove that A, B are simultaneously diagonalizable if and only if $A B=B A$.
6. (10 pts) Let V be the vector space of complex 2×2 matrices and $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in V$. Let $T \in \operatorname{End}(V)$ be defined by

$$
T(X)=X A-A X .
$$

Find the Jordan canonical form for the endomorphism T.

