554 QUALIFYING EXAM, JAN 6, 2022

Attempt all questions. Time 2 hrs.

- 1. (5 + 10 pts) Let A be an $n \times n$ complex matrix.
 - (a) Define the adjugate, adj(A), of A.
 - (b) Suppose eigenvalues of A are $\lambda_1, \ldots, \lambda_n$. Express the eigenvalues of $\operatorname{adj}(A)$ in terms of $\lambda_1, \ldots, \lambda_n$.
- 2. (5+5+5+5 pts) Let A, B be complex $n \times n$ matrices. Prove or disprove each of the following statements.
 - (a) If A and B are diagonalizable, then so is A + B.
 - (b) If A and B are diagonalizable, then so is AB.
 - (c) If $A^2 = A$, then A is diagonalizable.
 - (d) If A is invertible, and A^2 is diagonalizable, then A is diagonalizable.
- 3. (10+5+5 pts) Let V be a finite dimensional complex inner product space and $T \in \text{End}(V)$.
 - (a) Prove that there exists $P, U \in \text{End}(V)$ such that P is positive semi-definite, U is unitary and such that T = PU.
 - (b) Comment on the uniqueness of P, U.
 - (c) Prove that in the decomposition in part (a), PU = UP if and only if T is normal.
- 4. (5 + 10 pts) pts
 - (a) When is a complex square matrix unitary ?
 - (b) Prove that any complex square matrix A can be written as a product

A = UDV

where D is a diagonal matrix and U, V are unitary matrices.

- 5. (20 pts) Let A, B be $n \times n$ diagonalizable $n \times n$ complex matrices. Prove that A, B are simultaneously diagonalizable if and only if AB = BA.
- 6. (10 pts) Let V be the vector space of complex 2×2 matrices and $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in V$. Let $T \in \text{End}(V)$ be defined by

$$T(X) = XA - AX.$$

Find the Jordan canonical form for the endomorphism T.