554 QUALIFYING EXAM, AUG 9, 2022

Attempt all questions. Time 2 hrs .

1. $(5+10 \mathrm{pts})$
(a) Let V be a vector space over a field k, and $S \subset V$. What does it mean to say that S is linearly independent?
(b) Let $u \in \operatorname{End}(V)$. Suppose there exists $\alpha \in V$, and $m>0$, such that

$$
u^{m}(\alpha)=\mathbf{0}, u^{m-1}(\alpha) \neq \mathbf{0} .
$$

Prove that $S=\left\{\alpha, u(\alpha), \ldots, u^{m-1}(\alpha)\right\}$ is linearly independent.
2. ($5+10 \mathrm{pts}$) Let V be a finite dimensional vector space over a field k and $u \in \operatorname{End}(V)$.
(a) Define $\operatorname{rank}(u)$.
(b) Prove that

$$
2 \cdot \operatorname{rank}\left(u^{2}\right) \leq \operatorname{rank}(u)+\operatorname{rank}\left(u^{3}\right) .
$$

3. $(5+10 \mathrm{pts})$ Let V be a finite dimensional complex inner product space and $u \in \operatorname{End}(V)$.
(a) What does it mean to say that u is normal?
(b) Prove that u is normal if and only if there exists an orthonormal basis of V consisting of eigenvectors of u.
4. $(10+10$ pts $)$ Let V be a finite-dimensional vector space over a field k. Let $u, v \in \operatorname{End}(V)$. Prove or disprove (with an example) the following statements.
(a) Every eigenvector of $u \circ v$ is also an eigenvector of $v \circ u$.
(b) Every eigenvalue of $u \circ v$ is an eigenvalue of $v \circ u$.
5. ($5+10 \mathrm{pts}$) Let V be an n-dimensional complex inner product space.
(a) Define unitary transformations of V.
(b) Suppose that $u, v \in \operatorname{End}(V)$ are unitary transformations. Prove that

$$
|\operatorname{det}(u+v)| \leq 2^{n} .
$$

6. $(5+5+10 \mathrm{pts})$
(a) State but do not prove the additive Jordan decomposition theorem for finite dimensional complex vector spaces.
(b) Suppose that V is a finite dimensional complex vector space and $u \in \operatorname{End}(V)$. Let $\operatorname{ad}(u): \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ be the map defined by

$$
\operatorname{ad}(u)(v)=u \circ v-v \circ u
$$

for each $v \in \operatorname{End}(V)$.
(i) Prove that ad is a linear map $V \rightarrow \operatorname{End}(\operatorname{End}(V))$ (and so in particular $\operatorname{ad}(u) \in$ $\operatorname{End}(\operatorname{End}(V))$ for each $u \in \operatorname{End}(V))$.
(ii) Let $u \in \operatorname{End}(V)$ and suppose that $u=u_{s}+u_{n}$ is the additive Jordan decomposition of u. Prove that $\operatorname{ad}\left(u_{s}\right)+\operatorname{ad}\left(u_{n}\right)$ is the additive Jordan decomposition of $\operatorname{ad}(u)$.

