554 QUALIFYING EXAM, AUG 9, 2022

Attempt all questions. Time 2 hrs.

- 1. (5 + 10 pts)
 - (a) Let V be a vector space over a field k, and $S \subset V$. What does it mean to say that S is linearly independent?
 - (b) Let $u \in \text{End}(V)$. Suppose there exists $\alpha \in V$, and m > 0, such that

$$u^m(\alpha) = \mathbf{0}, u^{m-1}(\alpha) \neq \mathbf{0}.$$

Prove that $S = \{\alpha, u(\alpha), \dots, u^{m-1}(\alpha)\}$ is linearly independent.

- 2. (5 + 10 pts) Let V be a finite dimensional vector space over a field k and $u \in \text{End}(V)$.
 - (a) Define $\operatorname{rank}(u)$.
 - (b) Prove that

$$2 \cdot \operatorname{rank}(u^2) \le \operatorname{rank}(u) + \operatorname{rank}(u^3).$$

- 3. (5 + 10 pts) Let V be a finite dimensional complex inner product space and $u \in \text{End}(V)$. (a) What does it mean to say that u is normal?
 - (b) Prove that u is normal if and only if there exists an orthonormal basis of V consisting of eigenvectors of u.
- 4. (10 + 10 pts) Let V be a finite-dimensional vector space over a field k. Let $u, v \in \text{End}(V)$. Prove or disprove (with an example) the following statements.
 - (a) Every eigenvector of $u \circ v$ is also an eigenvector of $v \circ u$.
 - (b) Every eigenvalue of $u \circ v$ is an eigenvalue of $v \circ u$.
- 5. (5 + 10 pts) Let V be an n-dimensional complex inner product space.
 - (a) Define unitary transformations of V.
 - (b) Suppose that $u, v \in \text{End}(V)$ are unitary transformations. Prove that

$$\left|\det(u+v)\right| \le 2^n.$$

6. (5 + 5 + 10 pts)

- (a) State but do not prove the additive Jordan decomposition theorem for finite dimensional complex vector spaces.
- (b) Suppose that V is a finite dimensional complex vector space and $u \in \text{End}(V)$. Let $ad(u) : \text{End}(V) \to \text{End}(V)$ be the map defined by

$$\operatorname{ad}(u)(v) = u \circ v - v \circ u$$

for each $v \in \text{End}(V)$.

- (i) Prove that ad is a linear map $V \to \text{End}(\text{End}(V))$ (and so in particular $\text{ad}(u) \in \text{End}(\text{End}(V))$ for each $u \in \text{End}(V)$).
- (ii) Let $u \in \text{End}(V)$ and suppose that $u = u_s + u_n$ is the additive Jordan decomposition of u. Prove that $\operatorname{ad}(u_s) + \operatorname{ad}(u_n)$ is the additive Jordan decomposition of $\operatorname{ad}(u)$.