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Instructions:
1. The point value of each exercise occurs to the left of the problem.

2. No books or notes or calculators are allowed.
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1. (12 pts) Let V be a finite-dimensional vector space over a field F' and let W; and W5 be subspaces
of V. Prove that

dimW; 4+ dimW,; = dim(WlﬂWQ) + dim(Wl—i-Wg).

2. (6 pts) Let V be a finite-dimensional vector space over the field F' and let W be a subspace of
V. If f is a linear functional on W, prove that there is a linear functional g on V such that
g(a) = f(a) for each vector « in the subspace W.
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3. Let V and W be finite-dimensional vector spaces over a field F', and let T": V' — W be a linear
transformation.

(a) (2 pts) Define the rank of T'.

(b) (2 pts) Define the nullity of 7'

(c) (10 pts) State and prove a theorem involving the rank of 7" and the nullity of T.

4. (8 pts) Let F' be an infinite field and let g € F[x| be a monic polynomial of degree n > 0.

(a) Describe the ideals in F[z] that contain g.

(b) Are there finitely many or infinitely many ideals in F'[x]| that contain g7
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5. (12 pts) Let F be a field, let S be a set, and let F (S, F') be the set of all functions from S to F.

(a) As in Chapter 2 of Hoffman and Kunze, define vector addition and scalar multiplication
on the set F(S, F') so that F(S, F) is a vector space over the field F'.

(b) If S is a finite set with n elements what is the dimension of the vector space F(S,F) ?
Justify your answer.

6. (6 pts) State true or false and justify your answer: If V' is a finite-dimensional vector space and
W1 and Ws are subspaces of V' such that V = W; ® Wy, then for any subspace W of V' we have
W = (WﬂWl) @(WQWQ).
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7. Define the following terms as in Hoffman and Kunze.

(a) (4 pts) A is a linear algebra over the field F.

(b) (4 pts) The vector space V' of polynomial functions over a field F'.

(¢) (4 pts) The vector space F|z| of polynomials over a field F'.

8. (6 pts) For what fields F' is the vector space of polynomial functions over F' isomorphic to the
vector space of polynomials over F'? Justify your answer.
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9. Let D be a principal ideal domain and let M be a finitely generated D-module.

(a) (3 pts.) What does it mean for a subset S = {z1,...,2,} of M to be a generating set for
M?

(b) (3 pts.) What does it mean for a subset S = {z1,...,2,} of M to be a basis for M.

(¢) (6 pts.) What does it mean for a matrix A € D™*" to be a relation matriz for M? How
is a relation matrix for M constructed?

(d) (6 pts.) State true or false and justify your answer with either a proof or a counterexample:
Every nonzero finitely generated D-module has a basis.
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10. (20 pts) Let T': V — V be a linear operator on an n-dimensional vector space V', and let F be
the vector space of linear operators U : V — V that commute with 7.

(a) Prove that dim F > n.

(b) Prove that T has a cyclic vector if and only if every U € F is a polynomial in 7.
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11. (20 pts) Let V be an abelian group generated by elements a, b, c. Assume the following relations
hold: 2a = 4b,2b = 4c,2c = 4a, and these three relations generate all the relations on a, b, c.

(a) Write down a relation matrix for V.

(b) Find generators x,y, z for V such that V = () ® (y) @ (z) is the direct sum of cyclic
subgroups generated by x, vy, z, and express your generators x,y, z in terms of a, b, c.

(c) What is the order of V7

(d) What is the order of the element a?
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12. (10 pts) Let V be a finite-dimensional vector space over an infinite field F'. Prove that V is not
the union of finitely many proper subspaces.

13. (10 pts) Let V be a finite-dimensional vector space over an infinite field F' and let aq,...,apn
be finitely many nonzero vectors in V. Prove that there exists a linear functional f on V such
that f(«a;) # 0 for each i with 1 <1i < m.
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14. (18 pts) Let T': V. — V be a linear operator on an n-dimensional vector space over a field
F. Let ci,...,ck be distinct elements in F' and let p = (z — ¢1)™ - -+ (z — ¢x)"* be the minimal
polynomial of T. Let W; ={v e V | (T — ¢;I)"(v) = 0}.

(a) Describe linear operators E; : V. — Vi =1,...,k, such that E;(V) =W,;, E? = E; for
each i, E;E; =0ifi+# j, and By + --- + Ejy = I is the identity operator on V.

(b) Describe how to obtain linear operators D and N such that T = D + N, where D is
diagonalizable, N is nilpotent and D and N are polynomials in 7.

(¢) f T = D'+ N', where D’ is diagonalizable and N’ is nilpotent and D'N’ = N'D’, prove
that D = D' and N = N'.

10
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15. (18 pts) Let notation be as in the previous problem and let f = (z — ¢1)% --- (2 — c;)% be the
characteristic polynomial for 7. Thus n =d; + -+ + di and 1 < r; < d; for each 1.

(a) If r; + 1 =d, for each i € {1,...,k}, describe the Jordan form for 7'

(b) If r; + 2 = d; for each i € {1,...,k}, how many different Jordan forms are possible for 77

(c) If r; +3 =d; for each i € {1,...,k}, how many different Jordan forms are possible for 7'

11
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16. (10 pts.) Let V be an n-dimensional vector space over a field F'.

(a) True or false: Every monic polynomial in F[z] of degree n is the characteristic polynomial
of some linear operator on V. Justify your answer.

(b) True or false: Every monic polynomial in F[z] of degree n is the minimal polynomial of
some linear operator on V. Justify your answer.

12



