PUID:

Instructions:

1. The point value of each exercise occurs to the left of the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	18	
3	22	
4	18	
5	18	
6	18	
7	20	
8	20	
9	20	
10	18	
11	18	
12	10	
Total	200	

1. (12 pts) Let V be a finite-dimensional vector space over a field F and let W_{1} and W_{2} be subspaces of V. Prove that

$$
\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right) .
$$

2. (6 pts) Let V be a finite-dimensional vector space over the field F and let W be a subspace of V. If f is a linear functional on W, prove that there is a linear functional g on V such that $g(\alpha)=f(\alpha)$ for each vector α in the subspace W.
3. Let V and W be finite-dimensional vector spaces over a field F, and let $T: V \rightarrow W$ be a linear transformation.
(a) (2 pts) Define the rank of T.
(b) (2 pts) Define the nullity of T.
(c) (10 pts) State and prove a theorem involving the rank of T and the nullity of T.
4. (8 pts) Let F be an infinite field and let $g \in F[x]$ be a monic polynomial of degree $n>0$.
(a) Describe the ideals in $F[x]$ that contain g.
(b) Are there finitely many or infinitely many ideals in $F[x]$ that contain g ?
5. (12 pts) Let F be a field, let S be a set, and let $\mathcal{F}(S, F)$ be the set of all functions from S to F.
(a) As in Chapter 2 of Hoffman and Kunze, define vector addition and scalar multiplication on the set $\mathcal{F}(S, F)$ so that $\mathcal{F}(S, F)$ is a vector space over the field F.
(b) If S is a finite set with n elements what is the dimension of the vector space $\mathcal{F}(S, F)$? Justify your answer.
6. (6 pts) State true or false and justify your answer: If V is a finite-dimensional vector space and W_{1} and W_{2} are subspaces of V such that $V=W_{1} \oplus W_{2}$, then for any subspace W of V we have $W=\left(W \cap W_{1}\right) \oplus\left(W \cap W_{2}\right)$.
7. Define the following terms as in Hoffman and Kunze.
(a) $(4 \mathrm{pts}) \mathfrak{A}$ is a linear algebra over the field F.
(b) (4 pts) The vector space V of polynomial functions over a field F.
(c) (4 pts) The vector space $F[x]$ of polynomials over a field F.
8. (6 pts) For what fields F is the vector space of polynomial functions over F isomorphic to the vector space of polynomials over F ? Justify your answer.
9. Let D be a principal ideal domain and let M be a finitely generated D-module.
(a) (3 pts.) What does it mean for a subset $S=\left\{z_{1}, \ldots, z_{n}\right\}$ of M to be a generating set for M ?
(b) (3 pts.) What does it mean for a subset $S=\left\{z_{1}, \ldots, z_{n}\right\}$ of M to be a basis for M.
(c) (6 pts.) What does it mean for a matrix $A \in D^{m \times n}$ to be a relation matrix for M ? How is a relation matrix for M constructed?
(d) (6 pts.) State true or false and justify your answer with either a proof or a counterexample: Every nonzero finitely generated D-module has a basis.
10. (20 pts) Let $T: V \rightarrow V$ be a linear operator on an n-dimensional vector space V, and let \mathcal{F} be the vector space of linear operators $U: V \rightarrow V$ that commute with T.
(a) Prove that $\operatorname{dim} \mathcal{F} \geq n$.
(b) Prove that T has a cyclic vector if and only if every $U \in \mathcal{F}$ is a polynomial in T.
11. (20 pts) Let V be an abelian group generated by elements a, b, c. Assume the following relations hold: $2 a=4 b, 2 b=4 c, 2 c=4 a$, and these three relations generate all the relations on a, b, c.
(a) Write down a relation matrix for V.
(b) Find generators x, y, z for V such that $V=\langle x\rangle \oplus\langle y\rangle \oplus\langle z\rangle$ is the direct sum of cyclic subgroups generated by x, y, z, and express your generators x, y, z in terms of a, b, c.
(c) What is the order of V ?
(d) What is the order of the element a ?
12. (10 pts) Let V be a finite-dimensional vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.
13. (10 pts) Let V be a finite-dimensional vector space over an infinite field F and let $\alpha_{1}, \ldots, \alpha_{m}$ be finitely many nonzero vectors in V. Prove that there exists a linear functional f on V such that $f\left(\alpha_{i}\right) \neq 0$ for each i with $1 \leq i \leq m$.
14. (18 pts) Let $T: V \rightarrow V$ be a linear operator on an n-dimensional vector space over a field F. Let c_{1}, \ldots, c_{k} be distinct elements in F and let $p=\left(x-c_{1}\right)^{r_{1}} \cdots\left(x-c_{k}\right)^{r_{k}}$ be the minimal polynomial of T. Let $W_{i}=\left\{v \in V \mid\left(T-c_{i} I\right)^{r_{i}}(v)=0\right\}$.
(a) Describe linear operators $E_{i}: V \rightarrow V, i=1, \ldots, k$, such that $E_{i}(V)=W_{i}, \quad E_{i}^{2}=E_{i}$ for each $i, E_{i} E_{j}=0$ if $i \neq j$, and $E_{1}+\cdots+E_{k}=I$ is the identity operator on V.
(b) Describe how to obtain linear operators D and N such that $T=D+N$, where D is diagonalizable, N is nilpotent and D and N are polynomials in T.
(c) If $T=D^{\prime}+N^{\prime}$, where D^{\prime} is diagonalizable and N^{\prime} is nilpotent and $D^{\prime} N^{\prime}=N^{\prime} D^{\prime}$, prove that $D=D^{\prime}$ and $N=N^{\prime}$.
15. (18 pts) Let notation be as in the previous problem and let $f=\left(x-c_{1}\right)^{d_{1}} \cdots\left(x-c_{k}\right)^{d_{k}}$ be the characteristic polynomial for T. Thus $n=d_{1}+\cdots+d_{k}$ and $1 \leq r_{i} \leq d_{i}$ for each i.
(a) If $r_{i}+1=d_{i}$ for each $i \in\{1, \ldots, k\}$, describe the Jordan form for T.
(b) If $r_{i}+2=d_{i}$ for each $i \in\{1, \ldots, k\}$, how many different Jordan forms are possible for T ?
(c) If $r_{i}+3=d_{i}$ for each $i \in\{1, \ldots, k\}$, how many different Jordan forms are possible for T ?
16. (10 pts .) Let V be an n-dimensional vector space over a field F.
(a) True or false: Every monic polynomial in $F[x]$ of degree n is the characteristic polynomial of some linear operator on V. Justify your answer.
(b) True or false: Every monic polynomial in $F[x]$ of degree n is the minimal polynomial of some linear operator on V. Justify your answer.
