554 QUALIFYING EXAM, AUG 12, 2021

Attempt all questions. Time 2 hrs .

1. (10 pts) Let V be a complex vector space and $L \in \operatorname{End}(V)$. Let $\alpha \in V$ such that $L^{m} \alpha=\mathbf{0}$, and $L^{m-1} \alpha \neq \mathbf{0}$, for some positive integer m. Prove that $\alpha, L \alpha, \ldots, L^{m-1} \alpha$ are linearly independent.
2. (10 pts) Let V be a finite dimensional vector space over a field k, and W a subspace of V. Let $L \in \operatorname{End}(V)$ such that $\operatorname{Im}(L) \subset W$. Let $L^{\prime} \in \operatorname{End}(W)$ denote the restriction of L to W. Prove that

$$
\operatorname{det}\left(\operatorname{Id}_{V}+\lambda L\right)=\operatorname{det}\left(\operatorname{Id}_{W}+\lambda L^{\prime}\right)
$$

as elements of $k[\lambda]$.
3. (10 pts) Let E, F, G, H be four finite dimensional vector spaces over a field k and u : $E \rightarrow F, v: F \rightarrow G, w: G \rightarrow H$ be linear transformations. Prove that

$$
\operatorname{rk}(v \circ u)+\operatorname{rk}(w \circ v) \leq \operatorname{rk}(v)+\operatorname{rk}(w \circ v \circ u),
$$

where $\operatorname{rk}(\cdot)$ denotes the rank.
4. ($5+5 \mathrm{pts}$) Let L, L^{\prime} be endomorphisms of a finite dimensional vector space V over a field k. Prove or disprove (by providing a counter-example) the following statements.
(a) Every eigenvalue of $L \circ L^{\prime}$ is also an eigenvalue of $L^{\prime} \circ L$.
(b) Every eigenvector of $L \circ L^{\prime}$ is also an eigenvector of $L^{\prime} \circ L$.
5. (5 $+5+5$ pts) Let A be a complex $n \times n$ matrix all of whose entries are equal to 1 .
(a) Find the characteristic polynomial of A.
(b) Is A diagonalizable ? Prove or disprove.
(c) Find the Jordan canonical form of A.
6. $(5+5+5 \mathrm{pts})$ Let V be a finite dimensional complex Hermitian space and $u \in \operatorname{End}(V)$.
(a) Define the adjoint of u and prove that it exists.
(b) Prove that if u is self-adjoint then the eigenvalues of u are all real.
(c) Prove that if u is self-adjoint then u is diagonizable.
7. $(5+5 \mathrm{pts})$ Let V be the vector space of complex $n \times n$ matrices, $A \in V$, and $C(A) \subset V$ the set of $n \times n$ complex matrices which commutes with A.
(a) Prove that $C(A)$ is a subspace of V.
(b) Prove that $\operatorname{dim} C(A) \geq n$.
8. ($5+10+5 \mathrm{pts}$) Let V be a finite dimensional complex Hermitian vector space.
(a) What does it mean to say that $U \in \operatorname{End}(V)$ is a unitary transformation?
(b) Suppose that $U \in \operatorname{End}(V)$ is unitary. Prove that U is diagonalizable, and if λ is an eigenvalue of U, then $|\lambda|=1$.
(c) Let $L \in \operatorname{End}(V)$ such that $\operatorname{Id}_{V}+L, \operatorname{Id}_{V}+L^{2}, \operatorname{Id}_{V}+L^{3}$ are all unitary. Prove that $L=\mathbf{0}$.

