554 QUALIFYING EXAM, AUG, 2020

Attempt all questions. Time 2 hrs.

1. (10 pts) Let U, V, W be finite dimensional subspaces of a real vector space. Prove that $\dim(U) + \dim(V) + \dim(W) - \dim(U+V+W) \ge \max(\dim(U\cap V), \dim(V\cap W), \dim(W\cap U)).$ 2. (5 + 5 + 5 pts) Let $M_{2\times 2}$ be the vector space of all real 2 × 2 matrices. Let

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}.$$

Let $L: M_{2\times 2} \to M_{2\times 2}$ be the map defined by

$$L(X) = AXB.$$

- (a) Prove that L is a linear transformation.
- (b) Calculate the determinant of L.
- (c) Calculate the trace of L.

3. (5 + 10 pts)

(a) Let A, B be $n \times n$ real matrices, such that A is invertible. Prove that

$$\operatorname{rank}(AB) = \operatorname{rank}(B).$$

(b) Let A and B be $n \times n$ real matrices such that $A^2 = A, B^2 = B$, and $I_n - (A + B)$ is invertible. Prove that

$$\operatorname{rank}(A) = \operatorname{rank}(B).$$

4. (5 + 5 + 10 pts)

- (a) When are two $n \times n$ complex matrices similar ?
- (b) Let A be an $n \times n$ complex matrix with characteristic polynomial $(\lambda 1)^n$. Prove that A is invertible and that A is similar to A^{-1} .
- (c) Let A be an $n \times n$ complex matrix. Prove that A and A^T are similar matrices.
- 5. (5 + 10 pts) Let V be a finite dimensional complex inner product space and $f \in \text{End}(V)$.
 - (a) What does it mean to say that f is self-adjoint?
 - (b) If f is self-adjoint prove that all eigenvalues of f are real.
- 6. (5 + 5 + 5 pts) Let V be a finite dimensional complex vector space and $f \in \text{End}(V)$. (a) What does it mean to say that f is diagonalizable ?
 - (b) Define the minimal polynomial of f.
 - (c) Suppose that $f^k = 1_V$ for some positive integer k. Prove that f is diagonalizable.
- 7. (10 pts) Let $V = \mathbb{R}^3$ with the standard inner product and $(a, b, c)^T$ a vector of length 1. Let W be the subspace defined by $aX_1 + bX_2 + cX_3 = 0$. Find the matrix (with respect to the standard basis) which represents the orthogonal projection, $p: V \to V$, of V on to W.