554 QUALIFYING EXAM, AUG, 2020

Attempt all questions. Time 2 hrs.

1. (10 pts) Let U, V, W be finite dimensional subspaces of a real vector space. Prove that $\operatorname{dim}(U)+\operatorname{dim}(V)+\operatorname{dim}(W)-\operatorname{dim}(U+V+W) \geq \max (\operatorname{dim}(U \cap V), \operatorname{dim}(V \cap W), \operatorname{dim}(W \cap U))$.
2. ($5+5+5 \mathrm{pts})$ Let $M_{2 \times 2}$ be the vector space of all real 2×2 matrices. Let

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 1 \\
0 & 4
\end{array}\right] .
$$

Let $L: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the map defined by

$$
L(X)=A X B .
$$

(a) Prove that L is a linear transformation.
(b) Calculate the determinant of L.
(c) Calculate the trace of L.
3. $(5+10 \mathrm{pts})$
(a) Let A, B be $n \times n$ real matrices, such that A is invertible. Prove that

$$
\operatorname{rank}(A B)=\operatorname{rank}(B)
$$

(b) Let A and B be $n \times n$ real matrices such that $A^{2}=A, B^{2}=B$, and $I_{n}-(A+B)$ is invertible. Prove that

$$
\operatorname{rank}(A)=\operatorname{rank}(B)
$$

4. $(5+5+10 \mathrm{pts})$
(a) When are two $n \times n$ complex matrices similar ?
(b) Let A be an $n \times n$ complex matrix with characteristic polynomial $(\lambda-1)^{n}$. Prove that A is invertible and that A is similar to A^{-1}.
(c) Let A be an $n \times n$ complex matrix. Prove that A and A^{T} are similar matrices.
5. $(5+10 \mathrm{pts})$ Let V be a finite dimensional complex inner product space and $f \in \operatorname{End}(V)$.
(a) What does it mean to say that f is self-adjoint ?
(b) If f is self-adjoint prove that all eigenvalues of f are real.
6. ($5+5+5 \mathrm{pts}$) Let V be a finite dimensional complex vector space and $f \in \operatorname{End}(V)$.
(a) What does it mean to say that f is diagonalizable ?
(b) Define the minimal polynomial of f.
(c) Suppose that $f^{k}=1_{V}$ for some positive integer k. Prove that f is diagonalizable.
7. (10 pts) Let $V=\mathbb{R}^{3}$ with the standard inner product and $(a, b, c)^{T}$ a vector of length 1. Let W be the subspace defined by $a X_{1}+b X_{2}+c X_{3}=0$. Find the matrix (with respect to the standard basis) which represents the orthogonal projection, $p: V \rightarrow V$, of V on to W.
