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Instructions:

1. The point value of each exercise occurs to the left of the problem.

2. No books or notes or calculators are allowed.
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1. (20 pts) Let V be an abelian group generated by elements a, b, c. Assume the following relations
hold: 2a = 4b,2b = 4c,2c = 4a, and these three relations generate all the relations on a, b, c.

(a) Write down a relation matrix for V.

(b) Find generators x,y,z for V such that V' = (x) & (y) & (2) is the direct sum of cyclic
subgroups generated by x, vy, z, and express your generators x,y, z in terms of a, b, c.

(¢) What is the order of V?

(d) What is the order of the element a?
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2. (21 pts) Let T : V' — V be a linear operator on an n-dimensional vector space over a field F.
Let c1,...,c; be distinct elements in F' and let p(x) = (x — ¢1)™ -+ (x — ¢;)"™ be the minimal
polynomial of T. Let W; ={v e V | (T — ¢;I)"(v) = 0}.

(a) Describe linear operators E; : V. — Vi =1,...,k, such that E;(V) =W,;, E? = E; for
each i, E;E; =0ifi+# j, and By + --- + Ejy = I is the identity operator on V.

(b) Describe how to obtain linear operators D and N such that T = D + N, where D is
diagonalizable, N is nilpotent and D and N are polynomials in 7.

(¢) f T = D'+ N', where D’ is diagonalizable and N’ is nilpotent and D'N’ = N'D’, prove
that D = D' and N = N'.
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3. (21 pts) Let notation be as in the previous problem and let f(z) = (z — ¢1)% - -+ (z — c;)% be
the characteristic polynomial for 7. Thus n =d; + -+ di and 1 < r; < d; for each 1.

(a) If r; + 1 =d,; for each i € {1,...,k}, describe the Jordan form for 7'

(b) If r; +2 = d; for each i € {1,...,k}, how many different Jordan forms are possible for T'?

(c) If r; +3 =d, for each i € {1,...,k}, how many different Jordan forms are possible for 7'?



Math 55400 Qualifying Exam January 4, 2019 W. Heinzer

4. (10 pts) Let V be a finite-dimensional vector space over an infinite field F'. Prove that V' is not
the union of finitely many proper subspaces.

5. (10 pts) Let V be a finite-dimensional vector space over an infinite field F' and let aq, ..., ap,
be finitely many nonzero vectors in V. Prove that there exists a linear functional f on V such
that f(«a;) # 0 for each i with 1 <1i < m.
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6. (20 pts) Let V be a finite dimensional inner product space over C and let T': V' — V be a linear
operator.

(a) (2 pts) Define the adjoint 7™ of T.

(b) (6 pts) If T'=T™, prove that every characteristic value of T" is a real number.

(c) (6 pts) Assume that 7" = T™ and that ¢ and d are distinct characteristic values of T'. If «
and B in V are such that T'a = ca and T8 = df, prove that a and 3 are orthogonal.

(d) (6 pts) State true or false and justify: If A € R5*? is symmetric, then A is diagonalizable.
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7. Let M be a module over the integral domain D. A submodule N of M is pure in M if the
following holds: given y € N and a € D such that there exists x € M with ax = y, then there
exists z € N with az = y.

(a) (10 pts) Let N be a submodule of M and for x € M, let T = z + N denote the coset
representing the image of = in the quotient module M/N. If N is a pure submodule of
M, and annZ = {a € D | aT = 0} is the principal ideal (d) of D, prove that there exists
2’ € M such that z+ N =2’ + N and annz’ = {a € D | az’ = 0} is the principal ideal (d).

(b) (10 pts) If M = («) is a cyclic Z-module of order 12, list the submodules of M and indicate
which of the submodules of M are pure in M.
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8. (16 pts) Let M be a finitely generated module over the polynomial ring F[z|, where F is a field,
and let N be a pure submodule of M. Prove that there exists a submodule L of M such that
N+L=Mand NNL=0.
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9. (12 pts) Prove or disprove: if V is a vector space over a field F and T : V — V is a linear
operator such that every subspace of V is invariant under 7', then T is a scalar multiple of the
identity operator.

10. Let F be a field and let g(x) € F[z] be a monic polynomial.

(a) (5 pts) Describe the F[z]-submodules of V' = Fz]/(g(x)).

(b) (5 pts) If g(x) = 23(x — 1), diagram the lattice of F[z]-submodules of V = F[z]/(g(x)).
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11. (16 pts) Classify up to similarity all 3 x 3 complex matrices A such that A3 = I, the identity
matrix. How many equivalence classes are there?

10
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12. (8 pts) Let V' be an abelian group with generators (v1, v, v3) that has the matrix [2 102 g]

as a relation matrix. Express V as a direct sum of cyclic groups.

13. (16 pts) Consider the abelian group V = Z/(5%) @ Z/(5%) & Z.

(a) Write down a relation matrix for V' as a Z-module.

(b) Let W be the cyclic subgroup of V generated by the image of the element (52,5,5) in
Z/(5*) © Z/(5%) ® Z. Write down a relation matrix for W.

(c) Write down a relation matrix for the quotient module V/W.

(d) What is the cardinality of the quotient module V/W?

11



