554 QUALIFYING EXAM, JAN 2018

Attempt all questions. Time 2 hrs.

- 1. (5+10+5 pts) Let E be a finite dimensional complex vector space and $u \in \text{End}(E)$.
 - (a) Prove that if $Tr(u^i) = 0$ for each i > 0, then u is nilpotent.
 - (b) Suppose that

$$u = [u_1, v_1] + \dots + [u_m, v_m],$$

(where for any $f, g \in \text{End}(E)$ we denote $[f, g] = f \circ g - g \circ f$), and u commutes with each u_i for $1 \leq i \leq m$. Prove that u is nilpotent.

- (c) Suppose that $\operatorname{Tr}(u \circ v) = 0$ for all $v \in \operatorname{End}(E)$ satisfying $\operatorname{Tr}(v) = 0$. Prove that $u = \lambda \cdot \operatorname{Id}_E$ for some $\lambda \in k$.
- 2. (10+10 pts) Let E be a finite dimensional complex inner product vector space and $u, v \in \text{End}(E)$.
 - (a) Prove that if u is normal, then $u^* = p(u)$ for some polynomial $p \in \mathbb{C}[X]$.
 - (b) Suppose that $u, v \in \text{End}(E)$, such that u, v are normal and $u \circ v = v \circ u$. Prove that $u \circ v$ is normal.
- 3. (5+15 pts) Let E be a finite dimensional k-vector space and $u \in \text{End}(E)$. Consider End(E) as a k-vector space, and denote by ad(u) the element of End(End(E)) defined by $\text{ad}(u)(v) = u \circ v v \circ u$.
 - (a) State the additive Jordan decomposition theorem for endomorphisms of finite dimensional complex vector spaces.
 - (b) Prove that

$$\operatorname{ad}(u)_s = \operatorname{ad}(u_s), \operatorname{ad}(u)_n = \operatorname{ad}(u_n).$$

(using the notation for the additive Jordan decomposition).

- 4. (5+5+10 pts) Let E be a finite dimensional complex vector space, and $u \in \text{End}(E)$.
 - (a) Define the algebraic and geometric multiplicity of an eigenvalue λ of u.
 - (b) What are the algebraic and geometric multiplicities of the various eigenvalues of the endomorphism whose matrix with respect to a certain basis is given by

$$\left(egin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{array}
ight).$$

(c) Compute the rational canonical form of the matrix given in Part (4b).

5. (10+10 pts)

(a) Let M be a 3×3 matrix with complex entries. If M^3 is the identity matrix, what are the possibilities for the Jordan canonical form of M?

554 QUALIFYING EXAM, JAN 2018

(b) Let M be a 3×3 matrix with integer entries and det(M) = -1. Assume that every eigenvalue of M is rational. What are the possibilities for the minimal polynomial and Jordan canonical form of M?