554 QUALIFYING EXAM, JAN 2018

Attempt all questions. Time 2 hrs .

1. $(5+10+5 \mathrm{pts})$ Let E be a finite dimensional complex vector space and $u \in \operatorname{End}(E)$.
(a) Prove that if $\operatorname{Tr}\left(u^{i}\right)=0$ for each $i>0$, then u is nilpotent.
(b) Suppose that

$$
u=\left[u_{1}, v_{1}\right]+\cdots+\left[u_{m}, v_{m}\right],
$$

(where for any $f, g \in \operatorname{End}(E)$ we denote $[f, g]=f \circ g-g \circ f$), and u commutes with each u_{i} for $1 \leq i \leq m$. Prove that u is nilpotent.
(c) Suppose that $\operatorname{Tr}(u \circ v)=0$ for all $v \in \operatorname{End}(E)$ satisfying $\operatorname{Tr}(v)=0$. Prove that $u=\lambda \cdot \operatorname{Id}_{E}$ for some $\lambda \in k$.
2. ($10+10 \mathrm{pts})$ Let E be a finite dimensional complex inner product vector space and $u, v \in \operatorname{End}(E)$.
(a) Prove that if u is normal, then $u^{*}=p(u)$ for some polynomial $p \in \mathbb{C}[X]$.
(b) Suppose that $u, v \in \operatorname{End}(E)$, such that u, v are normal and $u \circ v=v \circ u$. Prove that $u \circ v$ is normal.
3. ($5+15 \mathrm{pts}$) Let E be a finite dimensional k-vector space and $u \in \operatorname{End}(E)$. Consider $\operatorname{End}(E)$ as a k-vector space, and denote by $\operatorname{ad}(u)$ the element of $\operatorname{End}(\operatorname{End}(E))$ defined by $\operatorname{ad}(u)(v)=u \circ v-v \circ u$.
(a) State the additive Jordan decomposition theorem for endomorphisms of finite dimensional complex vector spaces.
(b) Prove that

$$
\operatorname{ad}(u)_{s}=\operatorname{ad}\left(u_{s}\right), \operatorname{ad}(u)_{n}=\operatorname{ad}\left(u_{n}\right) .
$$

(using the notation for the additive Jordan decomposition).
4. ($5+5+10$ pts) Let E be a finite dimensional complex vector space, and $u \in \operatorname{End}(E)$.
(a) Define the algebraic and geometric multiplicity of an eigenvalue λ of u.
(b) What are the algebraic and geometric multiplicities of the various eigenvalues of the endomorphism whose matrix with respect to a certain basis is given by

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right) .
$$

(c) Compute the rational canonical form of the matrix given in Part (4b).
5. ($10+10 \mathrm{pts}$)
(a) Let M be a 3×3 matrix with complex entries. If M^{3} is the identity matrix, what are the possibilities for the Jordan canonical form of M ?
(b) Let M be a 3×3 matrix with integer entries and $\operatorname{det}(M)=-1$. Assume that every eigenvalue of M is rational. What are the possibilities for the minimal polynomial and Jordan canonical form of M ?

