554 QUALIFYING EXAM, AUG 62018

Attempt all questions. Time 2 hrs.

1. (20 pts) Suppose that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is a basis of the vector space V. Does it follow that $\vec{w}_{k}=\sum_{i \neq k} \vec{v}_{i}$ is also a basis of V ?
2. $(5+15 \mathrm{pts})$ Let E be the vector space of 3×3 real matrices. Let $A \in E$, and let $L_{A}: E \rightarrow E$ be the map defined by $B \mapsto A B$.
(a) Prove that L_{A} is an endomorphism of the vector space E.
(b) Suppose that $\operatorname{det}(A)=32$ and the minimal polynomial of A equals $(T-2)(T-4)$. What is the trace of L_{A} ?
3. (20 pts) Find an orthogonal matrix which diagonalizes the given symmetric matrix

$$
\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] .
$$

4. ($10+5+5$ pts) Let A be a complex $n \times n$ matrix, $n \geq 2$, all of whose entries are equal to 1.
(a) Find the characteristic and minimal polynomials of A ?
(b) Is A diagonalizable ? Justify your answer.
(c) Find the Jordan canonical form of A.
5. (20 pts) Suppose that T is a self-adjoint operator on an inner product space. If $T^{k} \vec{v}=\overrightarrow{0}$, for some $k \geq 2$, show that $T \vec{v}=\overrightarrow{0}$.
6. (20 pts) Let A be a 3×5, and B a 5×3 complex matrix such that

$$
A B=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Find the Jordan canonical form of the matrix $B A$.
7. (20 pts) If $A=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}10 & 6 \\ 0 & 8\end{array}\right]$, then decompose $A=Q S$, where Q is orthogonal and S is symmetric with positive eigenvalues.
8. $(6+6+8 \mathrm{pts})$ Let A, B be complex $n \times n$ matrices. Prove or disprove each of the following statements.
(a) If A and B are diagonalizable, then so is $A+B$.
(b) If A and B are diagonalizable, then so is $A B$.
(c) If $A^{2}=A$, then A is diagonalizable.

