554 QUALIFYING EXAM, AUG 6 2018

Attempt all questions. Time 2 hrs. 1. (20 pts) Suppose that $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ is a basis of the vector space V. Does it follow that $\vec{w}_k = \sum_{i \neq k} \vec{v}_i$ is also a basis of V?

1

- 2. (5 + 15 pts) Let E be the vector space of 3 \times 3 real matrices. Let $A \in E$, and let $L_A: E \to E$ be the map defined by $B \mapsto AB$.

 - (a) Prove that L_A is an endomorphism of the vector space E. (b) Suppose that det(A) = 32 and the minimal polynomial of A equals (T-2)(T-4). What is the trace of L_A ?

3. (20 pts) Find an orthogonal matrix which diagonalizes the given symmetric matrix $\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$.

- 4. (10 + 5 + 5 pts) Let A be a complex $n \times n$ matrix, $n \ge 2$, all of whose entries are equal to 1.
 - (a) Find the characteristic and minimal polynomials of A?
 - (b) Is A diagonalizable ? Justify your answer.
 - (c) Find the Jordan canonical form of A.

5. (20 pts) Suppose that T is a self-adjoint operator on an inner product space. If $T^k \vec{v} = \vec{0}$, for some $k \ge 2$, show that $T\vec{v} = \vec{0}$.

6. (20 pts) Let A be a $3\times 5,$ and B a 5×3 complex matrix such that

$$AB = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right].$$

Find the Jordan canonical form of the matrix BA.

7. (20 pts) If $A = \frac{1}{\sqrt{10}} \begin{bmatrix} 10 & 6 \\ 0 & 8 \end{bmatrix}$, then decompose A = QS, where Q is orthogonal and S is symmetric with positive eigenvalues.

- 8. (6+6+8 pts) Let A, B be complex $n \times n$ matrices. Prove or disprove each of the following statements.
 - (a) If A and B are diagonalizable, then so is A + B.
 - (b) If A and B are diagonalizable, then so is AB. (c) If $A^2 = A$, then A is diagonalizable.

8